
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22, 2009

Application of Software Safety Analysis Methods

Gee-Yong Park a∗, Sup Hur a, Se-Woo. Cheon a, Dong H. Kim a, Dong Y. Lee a, Kee C. Kwon a, Sungjin Lee b,
Youngho Koo b

a I&C and Human Factors Division, KAERI, 1045 Daedeok-daero, Yuseong, Daejeon, 305-353, Korea
b Nuclear Safety System Team, Doosan Heavy Industries & Construction Co., Ltd., Korea

*Corresponding author: gypark@kaeri.re.kr

1. Introduction

A fully digitalized reactor protection system, which
is called the IDiPS-RPS, was developed through the
KNICS project. The IDiPS-RPS has four redundant and
separated channels. Each channel is mainly composed
of a group of bistable processors which redundantly
compare process variables with their corresponding
setpoints and a group of coincidence processors that
generate a final trip signal when a trip condition is
satisfied. Each channel also contains a test processor
called the ATIP and a display and command processor
called the COM. All the functions were implemented in
software. During the development of the safety
software, various software safety analysis methods
were applied, in parallel to the verification & validation
(V&V) activities, along the software development
lifecycle. The software safety analysis methods
employed were the software hazard and operability
(Software HAZOP) study, the software fault tree
analysis (Software FTA), and the software failure
modes and effects analysis (Software FMEA).

2. Software Safety Analysis Methods

2.1 Software HAZOP

The software HAZOP is a main technique used in the

activities of software safety analysis for the IDiPS-RPS
software. It has been applied from the software
requirement specifications to the implemented codes
among the software development lifecycle.

The software HAZOP has some distinguishing
features in that the quantity to be deviated is not
quantitative but qualitative, i.e., the deviation quantities
are the software functional characteristics such as
accuracy, capacity, functionality, reliability, robustness,
security, and safety [1]. Moreover, with the software
functional characteristics as a deviation quantity, guide
phrases rather than guidewords are devised for a
systematic deviation and a checklist is made up based
on these guide phrases. The use of the guide phrases
was originally proposed by the LLNL in the form of the
NUREG report [2]. Based on this NUREG report, the
guide phrases applicable to the requirements, design,
and implementation phases for the IDiPS-RPS software
were devised carefully.

The reason for selecting this type of the software
HAZOP is due to the KNICS project's policy that the
proven technology (or a technology that has drawn a
consensus in the nuclear fields) has the highest priority

for the application.
The software HAZOP is performed to identify some

software defects that can induce one of the software-
contributable system hazards when a certain deviation
for each functional characteristic is applied to the
software system. The software-contributable system
hazards are presented in Table 1 for the IDiPS-RPS.

Table I: Software-Contributable Hazards for IDiPS RPS

Item
No. Hazards Criticality

Level

1 IDiPS cannot generate a trip signal when a trip condition
for a process variable is satisfied. 4

2 IDiPS generates a trip signal when it should not generate
a trip signal. 3

3 IDiPS cannot send qualified information of its operating
status to the main control room. 2

Table 2 presents one example of guide phrases for

corresponding functional characteristics for application
to a software requirements specification.

Table II: Some of Guide Phrases for Application at

Requirements Phase

Attribute Guide Phrases

Accuracy Wrong variable type
Accuracy Wrong variable name
Capacity Message volume is erratic
Capacity Untimely operator action

Functionality Function is not carried out as specified (for
each mode of operation)

Functionality Function is executed in incorrect operational
mode

Reliability Software fault tolerance requirements (if any)
are not met

Robustness Software fails in the presence of unexpected
input data

Safety S/W causes system to move to a hazardous
state

Security Unauthorized person has access to S/W
system

The software HAZOP analysis investigates all the

safety-critical, trip-functioning software requirements,
design specifications, and code to determine whether
there is a defect connected to the hazards in Table 1, by
applying iteratively all the items in the deviation
checklist to each software sub-system or module.

The software HAZOP method has an advantage of
the applicability to any form of documents or programs.
It can be applied to a document written by natural
language and also applicable to a formal description or
a software code. But, this requires a considerably large
amount of time and efforts of the software HAZOP
members. The software HAZOP was proven to be
useful in identifying a software hazard affecting the
system safety and availability, especially at the
requirements and design phases [3].

- 1 -

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22, 2009

2.2 Software FTA

The software FTA was applied to the detailed design
descriptions at the design phase and the source code at
the implementation phase. The trip-functioning
software modules of the IDiPS-RPS were implemented
by a function block diagram (FBD) that is provided by
the POSAFE-Q PLC. The software FTA was applied to
only the software design/implemented modules that
were identified to be defective from the software
HAZOP analysis. It searches a defect's cause and
location that can induce the most significant system
hazard as in the first item (Item No. 1) in Table 1.

The purpose of the application of the software FTA
at the design/implementation phases is to compensate
for the software HAZOP. Though an FTA was
proposed as a software safety analysis method at the
appendix of NUREG/CR-6101 [4], the application of
the software FTA to the safety software is rare in the
nuclear fields but this method with a systematic analysis
procedure has been successfully applied to non-nuclear
software systems [5].

In order to systematically perform the software FTA
analysis, the two basic frameworks were performed a
priori. One is the identification of the interface points
between a software module and the IDiPS-RPS system.
And the other is the establishment of the fault tree
template. The fault tree template was constructed for
each function block in the FBD and is drawn from the
intrinsic failure events of a function block. Considering
the facts described above, the software FTA is more
suited for applications at the design or implementation
phase rather than at the requirements phase because the
software structure is defined in more detail in the
software design architecture and the implemented code
can provide more concrete software unit elements.

In contrast to the software HAZOP analysis where a
forward broad-thinking analysis is provided, the
software FTA method is a backward step-by-step local
analysis method. It begins from the top node which
represents an unsafe state and searches for the causes of
the top event through logical paths of an FBD module,
up to its inputs. Moreover, the SFTA is usually
performed by an individual expert rather than through a
meeting of analysis team members. From the
application results of the software FTA [6], the
software FTA based on the fault tree template could
delicately search for a local defect or some logical error.
But it is difficult for the software FTA to apply to all
the software modules because of its complex structure
and time-consuming work.

2.3 Software FMEA

This method was applied to a part of the source code

in the ATIP that performs subsidiary functions relating
to various tests and interface functions.

A failure mode template was devised for a systematic
analysis for an FBD-implemented code and, in this case,
one single failure mode template (the fault tree template
of the software FTA consists of many sub-templates)
was applied to all the FBD modules. Table 3 presents a
simple failure mode template for the application to an
FBD code.

Table III: Failure-Mode Template for Software FMEA

ITEM FAILURE MODES

Omission
Incorrect Realization
Unintended Addition

Function

Function Interaction
Input Definition Fault

Input Value Fault
Input Timing Fault Input

Input Format Fault
Output Definition Fault

Output Value Fault
Output Timing Fault

Output

Output Format Fault

The software FMEA is performed by applying the

failure mode template as in Table 3 to each FBD
module. Through the FMEA analysis, some software
defects were found even though the program had been
tested in a rigorous way. One significant defect is the
violation of test criteria. When the channel D is
bypassed for a regular manual test, if an operator
inadvertently commands the start of a manual test at the
channel A, the test-performing processor in the channel
A can generate a test start signal without a channel
bypass of the channel A. Though this case is actually
hard to occur in a real situation (and also the trip-
functioning processors have the capability of rejecting
this abnormal test start signal based on their own test
decision mechanisms), the implemented code contains
this defect resulting from a small program logic error
that can easily be removed.

REFERENCES

[1] NUREG-0800, Standard Review Plan: BTP HICB–14,
Guidance on Software Reviews for Digital Computer-Based
Instrumentation and Control Systems, U.S. NRC, 1997.
[2] NUREG/CR-6430, Software Safety Hazard Analysis,
Lawrence Livermore National Laboratory, 1995.
[3] G. Y. Park, et al., "Safety Analysis of Safety-Critical
Software for Nuclear Digital Protection System," Lecture
Notes in Computer Science, Vol.4680, pp.148-161, 2007.
[4] NUREG/CR-6101, Software Reliability and Safety in
Nuclear Reactor Protection Systems, Lawrence Livermore
National Laboratory, 1993.
[5] N. G. Leveson and T. J. Shimeall, "Safety Verification of
Ada Programs using Software Fault Trees", IEEE Software,
July, pp.48-59, 1991.
[6] G. Y. Park, et al., Fault Tree Analysis of KNICS RPS
Software, Nuclear Engineering and Technology, Vol.40, No.5,
pp.397-408, 2008.

- 2 -

	분과별 논제 및 발표자

	PNO0: - 1227 -
	PNO1: - 1228 -

