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1. Introduction 

The monitoring of detailed 3-dimensional (3D) 
reactor core power distribution is a prerequisite in the 
operation of nuclear power reactors to ensure that 
various safety limits imposed on the LPD and DNBR, 
are not violated during nuclear power reactor operation. 
The LPD and DNBR should be calculated in order to 
perform the two major functions of the core protection 
calculator system (CPCS) and the core operation limit 
supervisory system (COLSS) [1]. The LPD at the 
hottest part of a hot fuel rod, which is related to the 
power peaking factor (PPF, qF ), is more important 

than the LPD at any other position in a reactor core. 
The LPD needs to be estimated accurately to prevent 
nuclear fuel rods from melting. In this study, support 
vector regression (SVR) and uncertainty analysis have 
been applied to estimation of reactor core power 
peaking factor. 

 
2. Support Vector Regression and Uncertainty 

Analysis 
2.1 Support Vector Regression (SVR) Model 

SVR models are learning systems. They are 
optimized with a learning algorithm that originates from 
the theoretical foundations of statistical learning theory 
and structural risk minimization (SRM). SVR models 
use an SRM principle to minimize the upper bound on 
the expected risk, which is the sum of the empirical risk 
and of the confidence interval [2]. SVR models can be 
well applied to regression and classification problems. 
The regression problem is transformed to determine the 
coefficients of the basis function of linear expansion. 
The SVR models nonlinearly map the original input 
data x  into higher dimensional feature space, ( )φ x . 
The SVR considers the following regression function: 
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The function ( )iφ x  is called the feature and the 
parameters w  and b  which are the support vector 
weight and bias. A nonlinear function is learned using a 
linear learning machine of which the learning algorithm 
minimizes a convex functional. The convex functional 
is expressed as a regularized risk function, and the 
parameters w  and b  are calculated by minimizing the 
risk function. The first line of Eq. (2) which is the 
regularized risk function is converted into the second 
line which is called a constrained risk function: 
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subject to the constraints  
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The constrained optimization problem of Eq. (2) can 
be solved by applying the Lagrange multiplier 
technique to Eqs. (2) and (3), and using a standard 
quadratic programming technique. Finally, the 
regression function of Eq. (1) becomes 
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where ( , ) ( ) ( )T
i iK =x x φ x φ x  is known as the kernel 

function and the coefficient iβ  is a function of the 

Lagrange multipliers iα  and *
iα ;  *

i i iβ α α= − .  
 

2.2 Uncertainty Analysis 
There are several possible sources of uncertainty in 

predictions using data-based models; selection of 
training data, model structure including complexity, and 
noise in the input variables and the output variables [3]. 
Since an SVR model is developed using a given 
training data set, each possible training data set selected 
from the entire population of data will generate a 
different model and there will be a distribution of 
predictions for a given observation. Also, model 
misspecification takes place when a model structure is 
not correct, thereby introducing a bias. 

The statistical bootstrap method works by generating 
many bootstrap samples of the training data set and 
retraining the SVR model parameters on each bootstrap 
sample. After repetitive sampling and training, the 
resulting predictions provide a distribution for the LPD 
value. This distribution can be used to calculate 
prediction intervals. There are two general algorithms 
for the bootstrap method: bootstrap pairs sampling and 
bootstrap residual sampling. 
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In this study, the bootstrap pairs sampling algorithm 
was used. The available data is divided into 
development data and test data. The development data 
consists of a large pool of data from which training and 
verification samples can be drawn. The test data is fixed. 
Uncertainty is separated into two types: variability and 
bias. 

The pool of development data represents all available 
data, excluding the defined set of fixed test data. Since 
bias estimates based on the training data can be much 
lower than bias estimates based on an independent set 
of data, especially in case of an overfit model, one 
should compute bias estimates based on the data pool 
rather than the training data. The estimate with a 95% 
confidence interval for an arbitrary test input ox  using a 
bootstrap method is  

( ) 2
0 0 0ˆ2ˆ ˆVar y biasy y δ± + = ± . (6) 

The estimate with a 95% confidence interval using an 
analytical method is  
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3. Application to reactor core power peaking factor 

The proposed SVR was applied to the first fuel cycle 
of the YGN-3 PWR plant. Two kinds of data sets 
consist of the positive ASI cases (12,765 points) and 
the negative ASI cases (12,766 points), Two SVR 
models are optimized for two kinds of data sets. The 
data obtained from simulations of the MASTER code 
comprises a total of 25,541 input-output data points 

1 2 11( , , , , )rx x x yL  or 1 2 14( , , , , ),rx x x yL  depending 
on whether the SPND signals are used or not. In 
OPR1000 nuclear power plants, the CPCS and the 
COLSS calculate the LPD to protect and monitor 
nuclear plants. When the SPND signals are not used, 
the proposed algorithm can be utilized as a protection 
algorithm. The training data was selected using 
subtractive clustering (SC) scheme after the test data 
was removed from the pool of acquired data. An SVR 
model can be optimized well by using informative data. 

To conduct an uncertainty analysis by the bootstrap 
method, 100 sample sets for training and verification 
are selected by randomly adjusting the radius rα  of the 
SC scheme in a specified range. The prediction 
intervals are very small, which means that the predicted 
values are very accurate. Also, the prediction intervals 
of the analytic method are about 2 or 3 times larger than 
those of the bootstrap method. The prediction intervals 
of the bootstrap method can have very high peak values 
at several test data points because the SVR models 
developed by 100 random sample training data sets 
have a large variance at the test data points. Fig. 1 
shows the estimation errors and their prediction 
intervals. Table 1 shows other test results to compare 
the PPF values calculated from the proposed SVR 
method and the COLSS method. 
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Fig. 1. Prediction Intervals of the SVR Model for Positive 

ASI (With SPND Signals) 

 

Table I: Comparison of Calculated PPF Values. 

ASI 
value Power MASTER 

(target) 
SVR Model 
(with SPND) COLSS

0.081 80 1.968 1.964 2.133 
0.094 90 1.959 1.955 2.135 
0.069 100 1.952 1.947 2.137 
0.073 103 1.949 1.946 2.138 
-0.525 80 2.778 2.779 3.000 
-0.504 90 2.718 2.716 2.961 
-0.483 100 2.663 2.658 2.918 
-0.520 103 2.646 2.642 2.905 
 

Also, PPFs were estimated by SVR models when the 
SPND signals are used and not used respectively. It is 
known that the RMS error calculated by the SVR model 
for the test data is similar to the RMS error for the 
verification data. Therefore, if the SVR models are first 
optimized using data for a variety of operating 
conditions, they can accurately estimate PPFs for other 
operating conditions. 

 
4. Conclusions 

The RMS error of the estimated PPF values is about 
0.15%. In addition, their uncertainty was analyzed by a 
bootstrap method using 100 sampled training data sets 
and verification data sets and analyzed by an analytical 
method. The prediction intervals are very small, which 
means that the predicted values are very accurate. As a 
result, the SVR models are accurate enough for use in 
core protection using power peaking factors and the 
monitoring of power peaking factors. 
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