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When the cluster estimation method is applied to a 
collection of input/output data, each cluster center is in 
essence a prototypical data point that exemplifies a 
characteristic behavior of the system and each cluster 
center can be used as the basis of a fuzzy rule that 
describes the system behavior. Therefore, a complete 
fuzzy system identification algorithm can be developed 
based on the results of the SC technique. A number of 

 Takagi-Sugeno type fuzzy rules can be generated, 
where the premise parts are fuzzy sets, defined by the 
cluster centers that are obtained by the SC algorithm. 
The membership function 

n

( ( ))iA kx

( )i∗x

 of an input data 

vector  to a cluster center  can be defined as 
follows: 
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1. Introduction 
The pipe bends and elbows are regarded as critical 

components in piping systems of nuclear power plants 
because they are incorporated into piping systems to 
allow modification of the isometric routing and more 
importantly pipe bends are usually incorporated to 
reduce anchor reaction forces. Also, the pipe bends and 
elbows are capable of absorbing considerably large 
thermal expansion and seismic movement through the 
energy dissipation as a result of local plastic 
deformation so that they maintain the integrity of piping 
system under transiently loading conditions [1]. 
However, significant care must be taken to avoid their 
collapse moment. Therefore, it is important to 
accurately assess the safety margin for a collapse of 
pipe bends and elbows under various operating 
conditions. ( )
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 The fuzzy inference system output  is calculated 

by the weighted average of the consequent parts of the 
fuzzy rules as follows: 

ˆ( )y k
2. Fuzzy Neural Networks 

2.1 Fuzzy Neural Network (FNN) 
The fuzzy model is constructed from a collection of 

fuzzy if-then rules. The inputs and outputs of the fuzzy 
model are real-valued variables. Therefore, instead of 
considering the Mamdani type fuzzy if-then rules that 
requires time-consuming defuzzification calculation, a 
Takagi-Sugeno type fuzzy inference system is used 
where the i -th fuzzy rule for -th time instant data is 
described as follows: 
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The function ( )( )if kx  is a polynomial in the input 
variables as follows: 
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The output of the fuzzy model given by Eq. (5) can be 
rewritten as 

The fuzzy model identification can be accomplished 
through clustering of numerical data. A subtractive 
clustering (SC) method is used as the basis of a fast and 
robust algorithm for identifying a fuzzy model and 
assumes the availability of N  input/output training 
data  where ( ( ), ( )T k y kx
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The fuzzy model should be optimized to accomplish 
the desired performance. The optimization is 
accomplished by a genetic algorithm combined with a 
least-squares method. ) ( )1 2( ), ( ), , ( )T

mk x k x kx L( )k x= , 

. It is assumed that the data points have 
been normalized in each dimension. The method starts 
by generating a number of clusters in the m N

1, 2,...,k N=

×  
dimensional input space. The SC method considers 
each data point as a potential cluster center and uses a 
measure of the potential of each data point, which is 
defined as a function of the Euclidean distances to all 
other input data points: 

 
2. Uncertainty Analysis 

In this paper, we use statistical and analytical 
uncertainty analysis methods. 

 
2.1 Statistical Method 
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The statistical uncertainty analysis works by 
generating many bootstrap samples of the training 
data set and retraining the data-based model 
parameters on each bootstrap sample. After repetitive 
sampling and training, the resulting predictions 
provide a distribution for the output value. This 
distribution can be used to calculate prediction 
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intervals. In this study, the bootstrap pairs sampling 
algorithm which is one of statistical methods is used. 
The available data is divided into development data 
and test data. The development data consists of a 
large pool of data from which training and 
verification samples can be drawn. The test data is 
fixed. The pool of development data represents all 
available data, excluding a fixed test data set. The 
estimate with a 95% confidence interval for an 
arbitrary test input  is  0x
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2.2 Analytic Method 
The variance of the predicted output can be estimated 

as follows: 
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The matrix F  is called the Jacobian matrix of first 
order partial derivatives with respect to the parameters 
determined from the least squares. The estimate with a 
95% confidence interval is 
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3. Application to the collapse moment prediction 

The three fuzzy models are trained for three kinds of 
data sets. They consist of the extrados, intrados and 
crown defect locations, respectively, which has smaller 
errors compared with results using only one data set. 
The number of rules for the three fuzzy models was 
automatically determined by the SC method [2]. To 
determine the antecedent parameters, such as the 
membership function parameters, we used the genetic 
algorithm to optimize the cluster radius and we used the 
least squares method to optimize the consequent 
parameters   and . To conduct an uncertainty 
analysis, FNN was trained by training data sets to 
analyze uncertainty analysis. They are verified through 
test data sets using 170 intrados cases, 170 extrados 
cases and 32 crown cases. Table 1 shows the 
performance of the fuzzy model predicting the collapse 
moment and Table 2 shows its uncertainty analysis 
results. Fig. 1 shows the predicted error and normalized 
predicted interval. 

ir

 
4. Conclusions 

In this paper, FNN has been used to predict the 
collapse moment due to the wall-thinned defects of 
bends in piping systems. Three fuzzy models were 
trained for three data sets divided into the three classes 
of extrados, intrados, and crown defects. The relative 
RMS errors are about 0.6% for the training data and 
0.8% for the test data. The RMS error of the fuzzy 
models for the test data is only a little greater than the 
RMS error for the training data. Therefore, if the fuzzy 
models are trained first by using a number of data 
including a variety of loading conditions and defect 

geometry cases, they can accurately estimate the 
collapse moment for any other defect cases. The FNN 
was accurate sufficiently for application to the collapse 
moment prediction of the wall-thinned pipe bends. 

 
REFERENCES 

[1] M.A. Shalaby, and M.Y.A.Younan, “Limit loads for pipe 
elbows subjected to in-plane opening moments and internal 
pressure,” J. Press. Ves. Tech. vol. 121, pp. 17-23, 1999. 
[2] M. G. Na, J. W. Kim, and I. J. Hwang, “Collapse Moment 
Estimation by Support Vector Machines for Wall-Thinned 
Pipe Bends and Elbows,” Nucl. Eng. Des., vol. 237, no. 5, pp. 
451-459, Mar. 2007. 

 

Table 1. Performance of the fuzzy model 

 

Training data Test data 

Relative 
maximum 
error (%) 

Relative 
RMS Error 

(%) 

Relative 
maximum 
error (%) 

Relative 
RMS Error 

(%) 
Extrados 
defects 5.3760 0.5476 4.5134 0.8095 

Intrados 
defects 3.6368 0.5035 6.0006 0.9354 

Crown 4.7385 0.6717 2.3344 0.7841 

 

Table 2. Uncertainty analysis results on collapse moment of 
wall-thinned pipe bends 

Thinning 
Location

Analytic Method Statistic Method 
Data 

numbers 
out of 

Prediction 
interval 
per total 
numbers

Un-
certainty 

(%) 

Data     
numbers     

out of 
Prediction 

interval 
per total 
numbers 

Un-       
certainty   

(%) 

Extrados 9/170 5.29 7/170 4.12 

Intrados 14/170 8.24 3/170 1.76 
Crown 3/32 9.38 3/32 9.38 
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Fig. 1. Predicted error and normalized predicted interval 
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