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1. Introduction 

 
Recently, the lattice Boltzmann method (LBM) has 

gained much attention for its ability to simulate fluid 

flows, and for its potential advantages over a 

conventional CFD method. The key advantages of LBM 

are, (1) suitability for parallel computations, (2) absence 

of the need to solve the time-consuming Poisson 

equation for a pressure, and (3) an ease with the way 

multiphase flows, complex geometries and interfacial 

dynamics may be treated[1].  

The motion of the bubbles in a liquid has been the 

focus of both academic and practical interest. The 

central problem is the relationship between the rise 

velocity, bubble shape due to the interface deformation 

and flow field. The buoyancy effect due to density 

difference in the two phase flows is characterized with 

Eotvos and Morton numbers[2]. 

In this study, a single bubble rising under a buoyancy 

is simulated with the method proposed by Zheng et 

al.[3]. The simulation results are compared with those of 

a previous numerical method such as VOF. The results 

by LBM are also presented for the coalescence  of the 

bubbles. The main objective of the present work is to 

establish the lattice Boltzmann method as a viable tool 

for the simulation of multiphase or multi-component 

flows.      

 

2. Methods and Results 

 

2.1 Methodology 

 

Here, we consider a flow with two phases which have 

different densities. The low density and high density are 

noted as Lρ and Hρ  respectively. The flow can be 

described by the Navier-Stokes equations and an 

interface evolution equation as [3]  
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where Mθ  is called mobility, φµ  is the chemical 

potential, P is the pressure tensor, 
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is the body force, and n, φ are 
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where Aρ and Bρ are the density of fluid A and fluid B 

respectively.   

Under the lattice Boltzmann framework, Eq. (1) can 

be solved by iterating the evolution equation for a set of 

distribution functions. These distribution functions 

evolve with a modified lattice Boltzmann equation and 

BGK approximation, 
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where ig  is the distribution function, iΩ is the 

collision term, φτ  is the dimensionless single relaxation 

time, ie  is the lattice velocity, and q is a constant 

coefficient.  

In Eq. (3), the term P⋅∇  is related to the surface 

tension force. This force can be rewritten as a potential 

term, 
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where 
2

0 sncp = , sc is the speed of sound.  

The potential form for the surface tension force is 

adopted to keep the energy conservation. 

Mathematically, the potential form and stress form are 

identical. However, numerically, the discretization error 

is different[3]. Thus, it is useful to eliminate spurious 

currents. 

The lattice Boltzmann implementation of Eqs. (2) and 

(3) can be described as  
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The equilibrium distributions satisfy the conservation 

laws as  
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The details are Ref. [3].  

The chemical potential is chosen as 

φκφφφµφ
22*3 )44( ∇−−= A  

Following the same procedure as [3], we can obtain the 

profile along the normal direction of the interface 

)/2tanh(* wζφφ =  

Where ζ is the coordinate which is perpendicular to 

the interface, and w is the thickness of the interface 

layer, 
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For a flat interface, the surface tension coefficient can 

be evaluated by Rowlinson and Widom[4]. 
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We can obtain the surface tension coefficient as 
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2.2 Results 

 

The two dimensional single bubble rising under a 

buoyancy is simulated. The density ratio and the 

surface tension are the same as Takada et al.[2]. The 

bubble is surrounded with stationary walls. Initially, it 

is located at a lower region of the computational 

domain (80x300). The dimensionless parameters are 

defined as 
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The bubble will rise at a nearly constant velocity due to 

the balance between the buoyancy and the drag force. 

The comparison of simulation results are shown in Fig. 

1. The present results are in good agreement with those 

of the VOF method and Takada’s LBM[3]. As shown in 

Fig. 1, the Eotvos number(Eo) increases gradually from 

5 to 40. The increase of Eo is equivalent to the decrease 

of the surface tension. These will enhance the 

deformation of a bubble. These results are clearly 

presented in Fig. 1. 

 

3. Conclusion 

 

The lattice Boltzmann method for two phase flows 

has been applied to the simulations of bubbles under a  

buoyancy. The results for the rise velocity, and the 

bubble shapes with Eotvos and Morton numbers were 

found to be in good agreement with the VOF method 

and other LBM method. The coalescence of the bubbles 

is also presented. Also, it can be implemented easily for 

a three dimensional case.  

 

 

 
 

Fig. 1. The flow velocities and interfacial profiles of 

rising bubbles simulated with present LBM method.  

(w=3, D=20, Γ =1, density ratio=2.45, 00521.0=σ ). 
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(a) Eo=5, M=0.2267 (b) Eo=10, M=0.4535 

(c) Eo=20, M=0.907 (d) Eo=40, M=1.813 
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