
Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22, 2009

Object-Oriented Programming in the Development of Containment Analysis Code

Tae Young Han∗a, Soon Joon Hong a, Su Hyun Hwang a, Byung Chul Lee a, and Choong Sup Byun b
a FNC Tech. Co. Ltd. SNU 135-308, San 56-1, Shinrim 9-Dong, Kwanak-Gu, Seoul, 151-742, S. Korea

b Korea Electric Power Research Institute, 65 Moonjiro, Yuseonggu, Daejeon, 305-380 , S.Korea

*Corresponding author: hanty@fnctech.com

1. Introduction

After the mid 1980s, the new programming concept,

Object-Oriented Programming (OOP) [1], was
introduced and designed, which has the features such as
the information hiding, encapsulation, modularity and
inheritance. These offered much more convenient
programming paradigm to code developers. The OOP
concept was readily developed into the programming
language as like C++ [1] in the 1990s and is being
widely used in the modern software industry.

In this paper, we show that the OOP concept is
successfully applicable to the development of safety
analysis code for containment [2] and propose the more
explicit and easy OOP design for developers.

2. OOP Design of Containment Analysis Code

In this section, the data structure of containment

analysis code is described in detail and the process of
the Class design and the features of OOP used in this
code are presented in order.

2.1 Data and Function Structure

The general data and the function structures used in

the containment analysis code are showed in Fig.1.

 Main

System

Solver

Volume

Cell Face

Matrix
Solver

Component

Input Output
FVM

Fig. 1. Data & Function Structure for Containment Analysis

Code

The data and the functions are roughly grouped into

two classes, system and solver. Here, system is the
object that could be accepted as containment or reactor
system and has the information of volumes and
components as like the geometrical data and the
characteristic values of materials. On the other hand,
solver is the set of the function for analyzing the system
using numerical analysis methods, especially, a

staggered semi-implicit finite volume method [2] in this
research.

2.2 Class Design

In OOP, a matter of the highest priority is that the

given system or data is analyzed, separated to some
parts, and redefined by the name of Class. These
processes are so-called Class design. After the basic
Classes from the given data are written, a large scale
Class can be designed using those. Then, the function
and the logical relation between Classes using the
written Class could be composed.

In the containment analysis code, the easiest way of
the Class design is that the Classes are just written as
the data structure of Fig.1 stands. For example, Cell and
Face Class as the minimum data types in this numerical
analysis method can be embodied. Here, Cell means
scalar cell and Face means vector cell or momentum
cell, and additionally it has the geometrical meaning as
the boundary between neighboring cells. Then, Volume
Class could be composed using these two Classes,
which means a general control volume. In addition,
Component Class is needed in order to simulate
components as like valve. Lastly, Volume and
Component belong together into System Class which is
identical meaning to containment.

Face

FaceField FaceWallSource

FaceInterfaceSource

Cell

CellField CellInterfaceSource

*Face CellWallSourceField

Vapor Liquid Drop

*Cell

Inheritance

Fig. 2. Class Diagram of Cell and Face

Especially, Fig.2 shows the Class diagram among the

Cell, Face, and Field Class composed in this code. Cell
has memory addresses, namely pointer, of six Faces in
the case of rectangular geometry and also owns the
three objects of Field Class, vapor, liquid and drop,
including material data. Likewise, Face has two
pointers of neighboring Cells and three independent
objects of Field Class.

When these Classes are actually written, Field, Face
and Cell Class as small scale Class are firstly designed,

- 1 -

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 22, 2009

and then Volume and System Class as larger scale Class
using the previously written Classes are composed.
This manner can make the more efficient development
than the old manner that the development proceeds
from the whole system to a part.

2.3 Data Hiding and Encapsulation

The features of OOP to be considered in Class design
are data hiding and encapsulation. These are to make
the interface which permits or forbids external
functions to get access to other Class. Additionally,
they mean that global or common variables are used as
few as possible. Because the appropriate data
encapsulation can increase the reliability of code and
the efficiency of maintenance, it was widely accepted as
modern programming method.

In this code, all Classes have the public member
functions which external functions or objects have
access to. For example, in order to update the member
variables inside Cell objects, an external function just
call a public member function, updateField(), defined in
Cell Class. In other words, an external function or
Class need not get direct access to the member
variables of Cell Class.

From the following simple programs written by old
manner and by the concept of encapsulation, one can
find out the difference of two manners.

Old Type

Cell cells[];
updateCell() {
 for(int i=0; i<N; i++) {
 cells[i].xxx =
 cell[i].aaa+cell[i].bbb;
 }
}

OOP Type

updateCell(Cell cells[]) {
 for(int i=0; i<N; i++) {
 cells[i].updateField();
 }
}
public Cell::updateField() {
 xxx = aaa+bbb;
}

Fig. 3. Sample Programs (I) by old type and OOP type

In the old type, all the data are opened and a external
function can get direct access to those. But, this type
has the risk that programmer doesn’t know where the
values of variables were changed and the inconvenience
that one should read all contents of the function. In
OOP type, however, the external function has only to
call the public function, updateField(), without direct
access to the variables of Cell Class.

2.4 Modularity and Portability

Because the well designed Classes using the above
stated OOP features has independence to other Classes,
the member data inside Classes can be efficiently
transferred to other Classes or functions and can be
easily exported to other codes. Also, when the code
needs to be modified, programmers can accomplish the
purpose by slight efforts.

Fig. 4 shows two examples written by old manner
and by the concept of OOP.

Old Type solveSystem(cell[], face[],

 component[] , int N, float x);

OOP Type solveSystem(system);

Fig. 4. Sample Programs (II) by old type and OOP type

All data in the program of old type have to be
individually transferred to external functions through
the parameters or the form as global or common
variables. But, the only parameter in the program of
OOP type is a single System object including all data
such as Cell and Face objects. Hence, if System Class is
designed as the containment including all volumes and
components and the other parts inside containment are
implemented to their equivalent Class as well, the each
Class have the independence and the high portability.

3. Conclusions

The safety analysis code for containment was
successfully implemented using the concept of object-
oriented programming. The given containment system
is separated to small parts and redefined by some
Classes such as Volume, Component, Cell and Face
according to the principal of data hiding and
encapsulation. Then, it was defined as System Class.

Consequently, the each Class has the modularity and
portability and the entire code can be efficiently
implemented. The code was verified by obtaining the
reasonable calculation results.

Acknowledgment

This study was performed under the project,

“Development of safety analysis codes for nuclear
power plants” sponsored by the Ministry of Knowledge
Economy

REFERENCES

[1] Bjarne Stroustrup, The C++ Programming Language,
Addison-Wesley Pub. Co., 3rd Edition, 2000.
[2] S.J. Hong, S.H. Hwang, T.Y. Han, B.C. Lee, C.S. Byun, A
Staggered Semi-implicit Finite Volume Method to Solve 3-
dimensional Containment Phenomena Based on Cell and Face
Porosity, Transactions of the Korean Nuclear Society Autumn
Meeting, Pyeong Chang, Korea, 2008.

- 2 -

	분과별 논제 및 발표자

	PNO0: - 721 -
	PNO1: - 722 -

