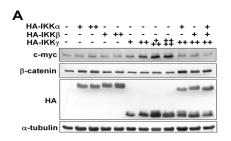
Modulation of Radio-response by the Modification and Stabilization of c-Myc by IKKy

Bu-Yeon Kim, Young-Hoon Han

Lab of Radiation Molecular Cancer Biology, Korea Institute of Radiological and Medical Sciences, 215-4, Gongneung-Dong, Nowon-Gu, Seoul 139-706, Korea


1. Introduction

The transcription factor c-Myc plays a critical role in multiple cellular processes including cell cycle progression, proliferation, differentiation, and apoptosis. The expression of c-Myc is generally upregulated in most of human cancers during tumor progression [1]. Correct regulation of c-Myc accumulation is thus essential, and achieved by multiple mechanisms acting at different stages of protein expression including the regulation of transcription, mRNA stability, translation, and protein stability [2]. Various mechanisms have been reported to regulate the stability of c-Myc. IKKy is a critical component for the activity of IKK complex, which is essential for NF-kB activation in response to a variety of stress stimuli. Besides the cytoplasmic role of IKKy in regulating the activity of IKK complex, IKKy was shown to shuttle between cytoplasm and nucleus and play a nuclear role in transcriptional repression of the NF- κ B pathway [3]. Here, we report that IKK γ stabilizes c-Myc protein through direct interaction and the stabilization and possible modification of c-Myc by IKKy modulates the cellular response to ionizing radiation.

2. Methods and Results

2.1 IKK γ overexpression results in the increase of endogenous c-Myc protein level.

When IKK γ was overexpressed in HEK293T cells, endogenous c-Myc protein level was significantly increased in dose-dependent manner (Fig. 1 A). Additional transfection of IKK α or IKK β blocked the IKK γ -mediated c-Myc increase, while the overexpression of IKK α or IKK β alone did not cause any change in c-Myc protein level. The effect of IKK γ overexpression on c-Myc accumulation is also shown by immunofluorescence staining (Fig 1 B).

В

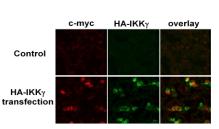


Fig. 1. IKK γ overexpression causes the increase of c-Myc protein level.

2.2 IKK *y* causes c-Myc protein increase by enhancing protein stability.

To study how IKKy induces c-myc protein increase, we compared the mRNA and protein level of c-myc after IKKy overexpression. mRNA level of c-Myc was not changed by IKKy overexpression, while c-Myc protein was highly increased (Fig. 2 A). IKKy overexpression does not activate the transcription from c-Myc promoter (Fig. 2 B). Next, we tested whether IKKy overexpression affects the protein stability of c-Myc. As IKKy protects c-Myc expected. protein from degradation and the ubiquitination of c-Myc is reduced in the presence of IKKy (Fig. 2 C,D). These results clearly show that IKKy induces c-Myc protein accumulation by stabilizing c-Myc protein, not by transcriptional induction.

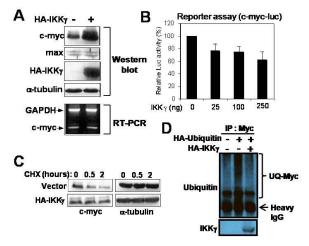


Fig. 2. IKK γ causes c-myc protein increase by enhancing protein stability.

2.3 IKKµmediated c-Myc stabilization takes place in nucleus by direct interaction.

Overexpressed IKK γ is enriched in the discrete region in nucleus, where c-Myc is highly accumulated and colocalized with IKK γ (Fig. 3A). c-Myc protein was readily co-precipitated with IKK γ in coimmunoprecipitation experiment (Fig. 3 B). These observations strongly suggest that IKK γ stabilizes c-Myc in the discrete region of nucleus through direct interaction.

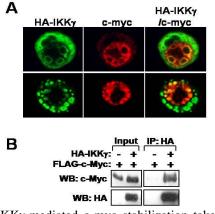
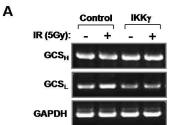



Fig. 3. IKK γ -mediated c-myc stabilization takes place in nucleus by direct interaction. (

2.4 c-Myc stabilized by IKK γ modulates the cellular response to ionizing radiation.

We next investigated whether IKK γ can regulate the c-Myc transcriptional activity. When IKK γ is expressed, the induction of γ -GCS_L, which is one of the radiationresponsive c-Myc downstream genes, by ionizing radiation is inhibited (Fig. 4 A). This suggests that IKK γ induces the modification c-Myc to the form unable to activate the transcriptional induction of specific target genes in response to ionizing radiation. Growth inhibition by ionizing radiation is

significantly reduced in IKK γ -overexpressing cells (Fig. 4 B), suggesting that the modification and stabilization of c-Myc by IKK γ makes cells resistant to ionizing radiation.

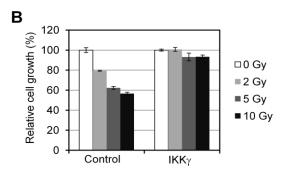


Fig. 4. Overexpression of IKK γ modulates the cellular response to ionizing radiation.

3. Conclusions

IKK γ is demonstrated here to modify and stabilize c-Myc protein. Compared to the classical role as an essential scaffold protein for the activity of IKK complex, the stabilization of c-Myc is a unique function of IKK γ that has never been reported. And this comprises the new novel mechanism to regulate c-Myc function. Our evidences indicate that c-Myc, when modified and stabilized by IKK γ , renders cells more resistant to ionizing radiation. Thus, the interaction between IKK γ and c-Myc can serve as the good target for the development of the therapy to overcome radioresistance.

REFERENCES

 C.E. Nesbit, J.M. Tersak, and E.V. Prochownik, Myc oncogenes and human neoplastic disease, Oncogene, Vol. 18, p. 3004, 1999
Spencer CA, Groudine M. Control of c-myc regulation in normal and neoplastic cells. Adv Cancer Res. Vol. 56, p. 1, 1991.
Verma UN, Yamamoto Y, Prajapati S, Gaynor RB. Nuclear role of I kappa B kinase-gamma/NF-kappa B essential modulator (IKK gamma/NEMO) in NF-kappa B-dependent gene expression. J Biol. Chem. Vol. 279(5), p. 3509, 2004.