Mass Production of ⁶⁴Cu with ⁶⁴Ni(p,n)⁶⁴Cu Nuclear Reaction and Target Material Recycling

Kwon Soo Chun, Hyun Park

Korea Institute of Radiological and Medical Sciences. Radiopharmaceutical Lab., Seoul, Korea *Corresponding author: <u>kschun@kcch.re.kr</u>

1. Introduction

⁶⁴Cu ($T_{1/2}$ =12.7h, β⁻ decay: 40%, β⁺ decay: 19%, E.C. decay: 41%) is one of the most useful radioisotope in the nuclear medicine due to its multiple decay mode and the intermediate half-life. Several nuclear reaction, i.e., ${}^{64}Ni(p,n){}^{64}Cu$, ${}^{68}Zn(p,\alpha n){}^{64}Cu$ and ${}^{64}Ni(d,2n){}^{64}Cu$ have been investigated for production[1]. The highest could be obtained with proton irradiation on the enriched ⁶⁴Ni target. For mass and routine production, the ⁶⁴Ni target fabrication using electroplating[2], the reliable chemical separation of ⁶⁴Cu from the irradiated ⁶⁴Ni target and the effective recovery process for the recycling of very expensive enriched material (\$20,000/g) and so forth are absolutely necessary to be established. In this work, we report our mass production method of ⁶⁴Cu with ⁶⁴Ni and Cyclone-30 accelerator.

2. Methods and Results

2.1 Materials

All reagents used for production were of analytical grade. Enriched ⁶⁴Ni (isotopic purity 96.1%) was purchased from Isoflex Russia. In order to dilute the enrichment of Ni to 25%, high purity NiCl₂·6H₂O (Puratronic^R) obtained from Alfa Aesar was added to enriched ⁶⁴Ni. The reagents for Au plating, KAu(CN)₂ was purchased form Merck and KH₂PO₄ and EDTA was bought from Aldrich. Boric acid and NaCl for Ni electrolyte were obtained from Merck. All ion exchange resin, anion (AG1-x8) and cation (AG50w-x8) were supplied from Bio-Rad. Dithizone and CCl₄ for solvent extraction were bought from Merck and Aldrich.

2.2 Preparation of Electrolyte for Au Plating and Enriched ⁶⁴Ni Material on Cu Cooling Plate

The electrolyte for Au plating on Cu cooling plate consisted of 300mg of KAu(CN)₂, 2g of KH₂PO₄ and 3g of EDTA in 500ml water. The electrolyte for Ni plating on the Au-coated Cu cooling plate was prepared with 1.5g of ⁶⁴Ni (enrichment: 25%), 1.0g of boric acid and 2g of NaCl in 90ml water.

2.3 Electroplating of Au and enriched ⁶⁴Ni on Cu Cooling Plate

Cu cooling plates were cleaned with abrasive wool, rinsed with water, acetone and air-dried. Two Cu plates were mounted in the plating vessel home-made. Under vigorous stirring (900rpm / 10:10 seconds) with PE rod and applying the constant current (60mA) with dc

power supply on Cu plates (cathode) in the plating vessel for 12hrs, Au was coated on the plates with 9.5mg/cm² of thickness. Careful observation of the Au surface has been done to confirm no crack on the surface. Au coated Cu cooling plate was mounted on the Ni electroplating device, the ⁶⁴Ni electrolyte was poured on it and the constant current (150mA) was applied on Cu cooling plate for 6hrs. During electroplating, the thickness of ⁶⁴Ni deposited on the target was expected with counting ⁵⁷Ni activity remained in the Ni electrolyte. ⁵⁷Ni was produced with ⁵⁸Ni(p,2p)⁵⁷Ni reaction. The cathode current efficiency of the Ni plating was about 50%.

Fig.1. Schematic drawing of ⁶⁴Ni electroplating device.

2.4 Proton Irradiation on the ⁶⁴Ni Target

The proton beam irradiation on the Ni target was done with Cyclone-30 accelerator. The beam energy was controlled to 18 MeV and the beam current was increased up to $150 \mu \text{A}$ step by step.

2.5 Irradiated ⁶⁴Ni target dissolving and Chemical Separation of ⁶⁴Cu from ⁶⁴Ni with solvent extraction and ion exchange resin

After the irradiation, Ni target stayed in the hot-cell for 1day to decay out the short-lived radioactive impurities. Ni target was dissolved with circulation of 50ml of 5N HCl on the dissolving device (Fig.2.) equipped with the heater and the temperature controller. During Ni target dissolving, the temperature was maintained to 90°C to increase the dissolving speed. 450ml of water was added to 64 Ni solution to dilute the normality of its hydrochloric acid to 0.5M.

Fig. 2. Schematic drawing of the target dissolving device.

The chemical separation of ⁶⁴Cu from ⁶⁴Ni target was performed with 250ml of 0.01% dithizone in CCl₄[3]. In order to remove the impurity RI completely, the organic phase was washed with 0.5N HCl and finally ⁶⁴Cu was recovered with the back extraction with 20ml of 7N HCl. The gamma-ray of RI in the aqueous phase and organic phase were measured with HPGe detector coupled with MCA and ⁵⁵Co, ⁵⁷Co, ⁵⁷Ni and so on, were found and the separation yield in each separation process were calculated with counting ratios of them(Fig.3.).

Fig. 3. Gamma-ray spectrum of the aqueous phase obtained with HPGe detector coupled with MCA

Fig. 5. Gamma-ray spectrum of the final ⁶⁴Cu solution.

2.5 Chemical process of ⁶⁴Ni recovery for recycling.

⁶⁴Ni remained in the aqueous phase after solvent extraction and in the electrolyte of ⁶⁴Ni electroplating was recovered with anion and cation exchange resin such as shown in the Fig. 4. Cation resin was used to concentrate ⁶⁴Ni and remove Fe ion and in order to remove ⁵⁷Co produced with ⁵⁸Ni(p,2p)⁵⁷Ni \rightarrow ⁵⁷Co reaction anion resin was used[4].

4. Conclusions

The developed ⁶⁴Cu separation procedure from ⁶⁴Ni target and chemical processing for ⁶⁴Ni recycling is summarized in a flow chart (Fig. 4.). ⁶⁴Cu production yield was about 8.9mCi/µAh corrected on 96% enrichment of ⁶⁴Ni at EOB and are in good agreement with those predicted by Szelecscenyi[5]. The radionuclidic purity was higher than 99% (Fig. 5.). The ⁶⁴Ni recovery yield with anion/cation ion exchange resin was more than 98%.

REFERENCES

[1] V.S. Smith, Molecular Imaging with Copper-64, J. Inorg. Biochem., Vol.98, p.1874-1901, 2004.

[2] IAEA Technical report Series No. 432. "Standardized High Current Solid Targets for Cyclotron Production of Diagnostic and Therapeutic Radionuclides" IAEA, Vienna, 2004.

[3] A.K. Dasgupta, L.F. Mausner and S.C. Srivastava, A New Separation Procedure for ⁶⁷Cu from Proton Irradiated Zn, Appl. Radiat. Isot. Vol. 42, p.371-376, 1991

[4] N. Saito, Selected data on ion exchange separations in Radioanalyical Chemistry, Pure & Appl. Chem., Vol. 56, p523-539, 1984

[5] F. Szelecscenyi, G. Blessing and S.M. Qaim, Excitation Functions of Proton Induced Nuclear Reactions on Enriched ⁶¹Ni and ⁶⁴Ni: Possibility of Production of No-carrier-added ⁶¹Cu and ⁶⁴Cu at a small Cyclotron, Appl. Radiat. Isot., Vol.44, p575-580, 1993

Fig. 4. Flow chart of ⁶⁴Cu mass production and ⁶⁴Ni enriched target recycling process.