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1. Introduction

A thermal-hydraulic analysis module, CUPID has
been developed for a design and safety analysis of a
nuclear reactor component [1]. In the CUPID code, a
two-fluid three-field model is adopted and the governing
equations are solved on an unstructured grid to make
CUPID advantageous for a flow analysis in complicated
geometries. As for the numerical solution scheme, the
semi-implicit method was adopted, which has proved to
be stable and accurate for most applications of a nuclear
reactor transient.

A thermal analysis of a heat structure in a nuclear
reactor component is very important for the safety
analysis of a nuclear reactor as well as that of a fluid.
Moreover, a conjugate heat transfer analysis between a
fluid and a heat structure is indispensible in many
transient situations of a nuclear reactor. For this reason,
a heat conductor model was implemented into the
CUPID module in this study. This paper presents the
governing equation, numerical method and verification
results of the heat conductor model.

2. Heat Conductor Model
2.1 Governing Equation and Numerical Method

The integral form of the heat conduction equation is

[p.Cy, ‘ZS av =[V -k VTV +[q/dV +[q, d4 (1)

where, S :solid and /: fluid.

Each term of the heat conduction equation can be
discretized with the finite volume method. The
conduction of heat is discretized implicitly and the heat
transfer on a solid-fluid interfaces explicitly.
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The subraction of second and third terms in the right
hand side of Eq. (3) is a cross diffusion of the
conductive heat, which is induced by a non-
orthogonality of a mesh.

Substituting Eqgs. (2)~(5) into Eq. (1) and rearranging
the equation, we obtain

(k,),-At-S
i sif TS AR
) ;{(ﬂ;cp,che//); '(Dii 'ﬁ)/ ( ' , )

k) -At-S, —
_ {( .v)/ f V
S

(EARCE (-5, 5, -7), )/}

q;" At ; (q/ —s ) 7 S_/
+

p.Cr s (,0 s CP,s I/ce[l)

A NxN system of linear algebraic equations are
established by considering N conductor cells as follows,
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The coefficient matrix of Eq. (7) is sparse because an
unstructured grid is used for the present solver.
However, it is a symmetric matrix so that the ICCG
(Incomplete Cholesky Conjugate Gradient) can be
applied to perform the matrix inversion, which is
beneficial in terms of fast convergence for symmetric
matrices [2].

2.2 Fluid-solid Interface

For the conjugate heat transfer analysis between
fluids and solids, the following energy conservation
relation was used to determine the interface temperature

(Fig. 1).

e (T f-s )_, T (T f-s )_, -1 (8)
q, 2 1 A, 2 A,
Rearranging Eq. (8), the fluid-solid interface

temperature can be obtained

Fig. 1 Control Volume of Fluid-Solid Interface
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where facl = Ax, /(Ax, + Ax,) and fac = Ax, /(Ax, + Ax,).

In the case of a two-phase flow, a heat partitioning
factor is necessary to distribute the energy transferred
from solids to each phase properly. For this, the
following simple heat partitioning factor was
implemented in the present solver.

1 if a,<09
Parti =1 110+ (a, -0.9) if 09<a, <1 (10)
This will be revised in the future with physically
reasonable models.

Finally, considering the heat partitioning factor, Eq.
(9) becomes
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(11)

facl[Part, -k, + (1= Part)) -kg] + fac -k,

3. Calculation Results for a Verification

For the verification of the conductor model of the
CUPID module, two preliminary calculations were
performed. One is for the heat conduction in a solid and
the other for the fluid-solid conjugate heat transfer.

Fig. 2 shows the meshes used for the conduction
equation solver verification (Problem-1). Both
structured mesh and unstructured mesh were used for
the calculations. For the boundary conditions, a constant
temperature wall (7, = 400K ) condition was imposed on

Boundary 1 and adiabatic walls on Boundaries 2, 3 and
4. A volumetric heat source ( q" =10kW/m®) was

applied to the problem. In Fig. 3, the CUPID calculation
results were compared with the analytical solution. As
shown in the figure, the calculation results of CUPID
are well correspondent with the analytical solution on
both structured and unstructured meshes.

The other verification problem (Problem-2) was the
2D-laminar flow heat transfer with two solid walls. Fig.
4 shows the mesh of the calculation, the imposed
boundary conditions and the properties of the fluid and
solid. In Fig. 5, the temperature distributions in the
calculation were compared with the analytical solutions.
The comparison of the results showed a good agreement
between the calculation and the analytical solution.

From these verification results, it was concluded that
the conductor model of the CUPID module was well
established and implemented.

4. Conclusion

The governing equation, numerical method and the
preliminary calculation results for the verification of the
CUPID conductor model are introduced in this paper.
The heat partitioning factor will be implemented based

on physical models instead of the simple model and
various calculations for its validation will be performed.
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Fig. 2 Meshes and Calculation Results for Problem-1
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Fig. 3 Calculation Results for Problem-1
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Fig. 4 Mesh and Boundary Conditions for Problem-2
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Fig. 5 Calculation Results for Problem-2
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