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1. Introduction 

 

A thermal-hydraulic analysis module, CUPID has 

been developed for a design and safety analysis of a 

nuclear reactor component [1]. In the CUPID code, a 

two-fluid three-field model is adopted and the governing 

equations are solved on an unstructured grid to make 

CUPID advantageous for a flow analysis in complicated 

geometries. As for the numerical solution scheme, the 

semi-implicit method was adopted, which has proved to 

be stable and accurate for most applications of a nuclear 

reactor transient.  

A thermal analysis of a heat structure in a nuclear 

reactor component is very important for the safety 

analysis of a nuclear reactor as well as that of a fluid. 

Moreover, a conjugate heat transfer analysis between a 

fluid and a heat structure is indispensible in many 

transient situations of a nuclear reactor. For this reason, 

a heat conductor model was implemented into the 

CUPID module in this study. This paper presents the 

governing equation, numerical method and verification 

results of the heat conductor model.  

 

2. Heat Conductor Model 

 

2.1 Governing Equation and Numerical Method 

 

The integral form of the heat conduction equation is 
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where, s :solid and  f : fluid. 
Each term of the heat conduction equation can be 

discretized with the finite volume method. The 

conduction of heat is discretized implicitly and the heat 

transfer on a solid-fluid interfaces explicitly. 
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The subraction of second and third terms in the right 

hand side of Eq. (3) is a cross diffusion of the 

conductive heat, which is induced by a non-

orthogonality of a mesh.  

Substituting Eqs. (2)~(5) into Eq. (1) and rearranging 

the equation, we obtain 
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A N×N system of linear algebraic equations are 
established by considering N conductor cells as follows,  
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 The coefficient matrix of Eq. (7) is sparse because an 

unstructured grid is used for the present solver. 

However, it is a symmetric matrix so that the ICCG 

(Incomplete Cholesky Conjugate Gradient) can be 

applied to perform the matrix inversion, which is 

beneficial in terms of fast convergence for symmetric 

matrices [2].  

 

2.2 Fluid-solid Interface 

 

For the conjugate heat transfer analysis between  

fluids and solids, the following energy conservation 

relation was used to determine the interface temperature 

(Fig. 1).  
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Rearranging Eq. (8), the fluid-solid interface 

temperature can be obtained  
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Fig. 1 Control Volume of Fluid-Solid Interface 
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where  )/(1 212 xxxfac ∆+∆∆=  and )/( 211 xxxfac ∆+∆∆= . 

In the case of a two-phase flow, a heat partitioning 

factor is necessary to distribute the energy transferred 

from solids to each phase properly. For this, the 

following simple heat partitioning factor was 

implemented in the present solver.  
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This will be revised in the future with physically 

reasonable models.  

Finally, considering the heat partitioning factor, Eq. 

(9) becomes    
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3. Calculation Results for a Verification 

 

For the verification of the conductor model of the 

CUPID module, two preliminary calculations were 

performed. One is for the heat conduction in a solid and 

the other for the fluid-solid conjugate heat transfer.   

Fig. 2 shows the meshes used for the conduction 

equation solver verification (Problem-1). Both 

structured mesh and unstructured mesh were used for 

the calculations. For the boundary conditions, a constant 

temperature wall ( KT 4001 = ) condition was imposed on 

Boundary 1 and adiabatic walls on Boundaries 2, 3 and 

4. A volumetric heat source ( )/10 3'" mkWq =  was 

applied to the problem. In Fig. 3, the CUPID calculation 

results were compared with the analytical solution. As 

shown in the figure, the calculation results of CUPID 

are well correspondent with the analytical solution on 

both structured and unstructured meshes.  

The other verification problem (Problem-2) was the 

2D-laminar flow heat transfer with two solid walls. Fig. 

4 shows the mesh of the calculation, the imposed 

boundary conditions and the properties of the fluid and 

solid. In Fig. 5, the temperature distributions in the 

calculation were compared with the analytical solutions. 

The comparison of the results showed a good agreement 

between the calculation and the analytical solution.  

  From these verification results, it was concluded that 

the conductor model of the CUPID module was well 

established and implemented.  

 

4. Conclusion 

 

The governing equation, numerical method and the 

preliminary calculation results for the verification of the 

CUPID conductor model are introduced in this paper. 

The heat partitioning factor will be implemented based 

on physical models instead of the simple model and 

various calculations for its validation will be performed.  
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Fig. 2 Meshes and Calculation Results for Problem-1 
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Fig. 3 Calculation Results for Problem-1 
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Fig. 4 Mesh and Boundary Conditions for Problem-2 
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Fig. 5 Calculation Results for Problem-2 
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