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1. Introduction 
 

Recently, the lattice Boltzmann method (LBM) has 
gained much attention for its ability to simulate fluid 
flows, and for its potential advantages over a 
conventional CFD method. The key advantages of 
LBM are, (1) suitability for parallel computations, (2) 
absence of the need to solve the time-consuming 
Poisson equation for a pressure, and (3) an ease with 
multiphase flows, complex geometries and interfacial 
dynamics may be treated[1].  

The shape of a moving droplet is difficult to 
investigate analytically because the classical continuum 
hydrodynamic equations of motion with the usual no-
slip condition at the surface predict a singularity in the 
stress at the contact line[2]. Briant et al. have proposed 
a wetting boundary condition by using the wetting 
potential[3]. 

In this study, we introduce the wetting boundary 
condition into the LBM proposed by Zheng et al.[4]. 
The static contact angle of a droplet onto a wall in order 
to validate the method is calculated. By adopting a 
finite difference gradient operator of a sufficient 
isotropy, the spurious currents can be made small in the 
wall surface. The main objective of the present work is 
to establish the lattice Boltzmann method as a viable 
tool for the simulation of multiphase or multi-
component flows.      

 
2. Methods and Results 

 
2.1 Methodology 

 
Here, we consider a flow with two phases which 

have different densities. The low density and high 
density are noted as Lρ and Hρ  respectively. The flow 
can be described by the Navier-Stokes equations and an 
interface evolution equation as [4]  
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where Mθ  is called mobility, φμ  is the chemical 

potential, P is the pressure tensor, is the body force, 

and n, 
bF
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where Aρ and Bρ are the density of fluid A and fluid B 
respectively.   

Under the lattice Boltzmann framework, Eq. (1) can 
be solved by iterating the evolution equation for a set of 
distribution functions. These distribution functions 
evolve with a modified lattice Boltzmann equation and 
BGK approximation, 
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where  is the distribution function, ig iΩ is the 

collision term, φτ  is the dimensionless single relaxation 

time,  is the lattice velocity, and q is a constant 
coefficient.  

ie

In Eq. (3), the term P⋅∇  is related to the surface 
tension force. This force can be rewritten as a potential 
term, 
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where , is the speed of sound.  2
0 sncp = sc

The potential form for the surface tension force is 
adopted to keep the energy conservation. 
Mathematically, the potential form and stress form are 
identical. However, numerically, the discretization error 
is different[4]. Thus, it is useful to eliminate spurious 
currents. 
The lattice Boltzmann implementation of Eqs. (2) and 

(3) can be described as  
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The equilibrium distributions satisfy the conservation 
laws as  
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The details are Ref. [4].  
The chemical potential is chosen as 
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Following the same procedure as [4], we can obtain 
the profile along the normal direction of the interface 
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Where ζ is the coordinate which is perpendicular to 

the interface, and w is the thickness of the interface 
layer, 
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For a flat interface, the surface tension coefficient can 
be evaluated by Rowlinson and Widom[5]. 
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We can obtain the surface tension coefficient as 
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2.2 Wetting boundary condition 
 

When a liquid-gas interface meets a solid wall, the 
angle( wθ ) is determined by the liquid-gas, solid-liquid 
and solid-gas surface tensions according to Young’s 
equation 
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Briant et al.[3] defined the wetting boundary conditions 
which reproduce Young’s equation in an equilibrium 
state. The solid-gas and solid-liquid surface tensions 
will be related to an additional term in the Landau free 
energy functional which describes the interactions at 
the surface between the solid and the fluid. The total 
free energy of the domain is obtained, 
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Minimizing this Eq. with a natural boundary condition 
by a variational calculus, two conditions are obtained[3]. 
Therefore, the following wetting boundary conditions 
are imposed on Eq. (4). For example, at y=0, 
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The wetting potential γ  is calculated analytically by 
Briant et al.[3]. 

 
 
 
 

2.3 Results 
 
The static contact angle of a droplet on a wall is 

calculated by using the present method. A hemisphere 
droplet with radius R placed on a wall. The bounce 
back boundary condition is used on all the walls, and 
the wetting potential γ is given on the bottom wall. Fig. 
1 shows the results with the different contact angles. 
The droplet spreads as time passes, and finally reaches  
an equilibrium shape with different contact angles 46o, 
90o and 134o. The present results are in good agreement 
with the theoretical curve obtained by Young’s 
equation.  
 

 

 
Fig. 1. The equilibrium shape with the contact angles, 

 ooo 134,90,46=wθ
(w=2, d=4, Γ =40, density ratio=1000, 1=σ ). 

 
3. Conclusion 

 
The lattice Boltzmann method for two phase flows 

has been applied to the simulations of wetting dynamics 
by using the wetting boundary condition. The static 
contact angles obtained through the simulation were 
found to be in good agreement with Young’s equation. 
Also, it can be easily implemented for the three 
dimensional case.  
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