
Transactions of the Korean Nuclear Society Autumn Meeting
PyeongChang, Korea, October 30-31, 2008

Development of a Wrapper Object, TRelap, for RELAP5 Code
for Use in Object Oriented Programs

Young Jin Lee

Korea Atomic Energy Research Institute, Dukjin 150, Yuseong, 305-600 Daejeon, Korea
yjlee1@kaeri.re.kr

1. Introduction

TRelap object class has been developed to enable

object oriented programming techniques to be used
where functionality of the RELAP5 thermal hydraulic
system analysis code[1] is needed.

The TRelap is an object front for Dynamic Link
Library (DLL) manifestation of the Relap5 code,
Relap5.dll. In making the Relap5.dll, the top most
structure of the RELAP5 was altered to enable the
external calling procedures to control and the access the
memory. The alteration was performed in such a way to
allow the entire “fa” and the “ftb” memory spaces to be
accessible to the calling procedure. Thus, any variable
contained within the “fa” array such as the parameters
for the components, volumes, junctions, and heat
structures can be accessed by the external calling
procedure through TRelap. Various methods and
properties to control the RELAP5 calculation and to
access and manipulate the variables are built into the
TRelap to enable easy manipulation.

As a verification effort, a simple program was written
to demonstrate the capability of the TRelap.

2. Methods and Results

When developing the Nuclear Plant Analyzer (NPA)

and simulators, the integration of program routines in
thermal hydraulics, computer graphics, man-machine
interface and others are needed. However, these
different routines are usually written in different
program languages. When developing large scale
programs that require integration of program routines
from different disciplines, it is advantageous to use the
modern programming languages with OOP (Object
Oriented Programming)[2] feature. The OOP has
advantages in code maintenance, re-useability, and
ease-of-use and has been a popular programming
technique for over a decade in various software
development fields. The OOP begins to have substantial
advantages when the program sizes and the required
integration become large.

The nuclear thermal-hydraulic field has been very
slow in accepting the OOP techniques. Part of the
reason is that most thermal hydraulic system analysis
codes were written in outdated Fortran language
without OOP considerations. Although the RELAP5
code has a good solid modular structure amenable to
transition to modern OOP language, it would be a
considerable undertaking to convert RELAP5 to use the
OOP features. Much easier and simpler transition to

OOP is to develop a wrapper object class for the
RELAP5. In this light, and the TRelap, which is a
wrapper object of the DLL version of RELAP5, has
been developed.

In this section some of the techniques used to
develop the TRelap are described.

2.1 RELAP5.DLL

The first step in the development of TRelap was to

develop the DLL version of the Relap5 code, Relap5.dll.
The main requirements for the Relap5.dll was to
facilitate the external “drive” routine to control the
time-advancement, and have the read/write access to
entire “fa” and the “ftb” memory spaces thereby
effectively having near complete control of the
RELAP5 program. The near complete control
requirement was deemed essential if TRelap was to be
used as thermal hydraulic engine for such programs as
the NPA and simulator.

To realize these requirements, it was needed to
modify the top-most structure of the Relap5. The
relap5.f was re-coded to include the codings of trnctl.f
and the tran.f. Also, some coding was necessary to
calculate the “fa” and “ftb” memory locations. The
overview of the coding structure change is shown in
Figure 1.

The relap5.dll has just a single exported procedure
having 7 parameters. 2 of the parameters are the
memory addresses, and the rest are parameters used
either for controlling the calculation flows or for
showing the status of the calculation.

INPUT

RELAP5 INPUT

TRNCTL*

STRIP

TRAN*

TRNSET

TRNFIN

TRIP

DTSTEP

TSTATE

HYDRO

HTADV

RKIN

CONVAR

RELAP5
(DLL)

STRIP

TRNSET

TRNFIN

TRIP

DTSTEP

TSTATE

HYDRO

HTADV

RKIN

CONVAROriginal StructureOriginal Structure ModifiedModified
StructureStructure* : removed subroutines

INPUT

RELAP5 INPUT

TRNCTL*

STRIP

TRAN*

TRNSET

TRNFIN

TRIP

DTSTEP

TSTATE

HYDRO

HTADV

RKIN

CONVAR

RELAP5
(DLL)

STRIP

TRNSET

TRNFIN

TRIP

DTSTEP

TSTATE

HYDRO

HTADV

RKIN

Original StructureOriginal Structure CONVAR
ModifiedModified
StructureStructure* : removed subroutines

Figure 1. Re-coding of relap5.f to make relap5.dll

2.2 TRelap

557

Transactions of the Korean Nuclear Society Autumn Meeting
PyeongChang, Korea, October 30-31, 2008

TRelap is a wrapper for the Relap5.dll written in
Delphi (Object Pascal)[3]. TRelap is a true object in the
sense that it can be created, inherited, polymorphed and
destroyed as needed, and multiple instances of TRelap
can be created with careful input/output/rstplt file
maintenance.

Major public properties of TRelap include:
- time step advancement count
- hydro time
- indices to access variables of components,

volumes, trips, heat structures, etc.
- lists in text form of components, volumes,

junctions, trips, etc.
Major public methods include:
- method to create an instance of TRelap
- method to destroy an instance of TRelap
- method to read input and carry out initialization
- method to run specified number of time steps
- method to run to the end of problem
- methods to obtain general information, volume

information, junction information, heat structure
information, component information, and others
in text format

If more functionality is required, it is a simple matter
of adding more methods or properties to the TRelap. In
addition, because the TRelap is a true object of OOP, it
is possible to make new object classes through
inheritance and polymorphism where the variables and
methods can be added, encapsulated, overloaded or
overridden.

The detachment of the thermal-hydraulic calculation
from other modules such as GUI, through the use of
TRelap makes it simpler to modify the thermal
hydraulic routines, as the modification would not, in
most case, affect the other modules.

2.3 Demonstration program

In order to test and demonstrate the functionality of

TRelap, a simple GUI (Graphic User Interface) based
program was written. The program was written in
Delphi and consists of TRelap and the GUI program
modules. The program reads in the input deck, creates
an instance of TRelap, controls the time step
advancement (run/pause/stop), and examines the minor
edit variables. Most of the functions can be carried out
interactively using the GUI.

Figure 2 shows the screen captures obtained during
the excution of the demonstration program. With the
TRelap, the write up of the thermal hydraulic part of the
program was a trivial effort. Most of the efforts in
producing the demonstration program were in the
coding of the GUI for the interactive program execution.

The TRelap performed in stable manner with only a
slight degradation in execution time. The results of the
calculations were identical to those calculated using the
original relap5.

Figure 2. Screen Captures of the Demonstration Program

3. Conclusions

An object class, TRelap, for the best-estimate thermal
hydraulic system analysis code, RELAP5, has been
developed successfully.

The RELAP5 code has been an effective tool for
safety and performance analyses, and with the vast
improvement in computing power, the use of the
RELAP5 code for personal computer based simulators
and NPA has become practical.

Use of TRelap wrapper object has proven to be an
efficient means of circumventing the difficulties of
applying modern programming techniques such as OOP
on Fortran based RELAP code. Although the TRelap
has been created with least amount of re-coding of the
original RELAP5, it is a true object in OOP.

The demonstration program has shown that TRelap
can vastly simplify the integration of RELAP5 with the
GUI program modules by effectively detaching the
RELAP5 from the GUI modules. TRelap has shown
that RELAP5 functionality can be added to programs
with minimum efforts. TRelap has also shown that
object oriented programming can improve code
maintenance and re-useability.

REFERENCES

[1] “RELAP5/MOD3.3 Code Manual Volume VIII :
Programmers Manual”, Idaho National Laboratoty,
NUREG/CR-5535, 2001.
[2] “Object Oriented Software Construction”, Bertrand Meyer,
Prentice Hall, 1997.
[3] Borland Software Corporation, Delphi 6 for Windows
Developer’s Guide, 1998.

558

	분과별 논제 및 발표자

