
Transactions of the Korean Nuclear Society Autumn Meeting
PyeongChang, Korea, October 30-31, 2008

A Method for Module Testing of Complex Safety Critical Software for Nuclear Power Plants

Sung Ho Kim∗, Do Young Oh, Chang Ho Kim, Woo Goon Kim, Se Do Sohn
I&C System Engineering Department, Korea Power Engineering Co.

150 Duckjin-dong, Yuseong-gu, Daejeon 305-323
*Corresponding author: shkim9@kopec.co.kr

1. Introduction

Software to be used for safety critical systems of

nuclear power plants are developed based on a strict
development process. Testing is one of the important
development activities. Several steps of tests are taken
for high degree of reliability to perform protection
functions. This kind of software generally has complex
structure and consists of tens or hundreds of modules.
Each module developed needs testing on basic
(module) level and integrated (unit) level. The software
modules need to be tested by the developers during
development step to reduce burden of defect finding-
correction-regressive testing process during test step. If
we consider that development environment is totally
different from the target system, several points should
be taken into considerations for the tests during
development step and test step. This is to reduce the
gap between those two environments for effective
testing. In this paper, the test environments to check
each module’s logic during development step and test
step are highlighted, and the differences in those two
environments are analyzed. Resolutions to overcome
those differences are presented.

2. Software Development and Tests

Software for safety critical system is developed based

on one of the software life cycle models, and a widely
used V-model is selected (Fig. 1).

 Fig. 1. A Software Development Model (V-Model)

 Software is designed and documented from the

requirement to the design phases. Programs are coded
during the implementation phase and tested during test
phase. Fig. 2 shows the software development
environments of implementation and test phases.

 Fig. 2. Development Steps for Safety Critical Software

2.1 Software Development

Software is developed on personal computer
environment having dedicated development tool
provided by the platform vendor. Software architecture
is decided under development environment. Documents
developed for the design phase are used to implement
the software. No formal testing is performed to the
coding step, since verification and validation test are
performed through the implementation and the test
phases by the group independent of the development
group.

2.2 Tests in Development Environment

Software developed under development environment
is highly recommended to be tested by the developers.
Logic (algorithm) incorporating the functional
requirements can be checked per software module by
the developers.

During the developer’s module test step, static inputs
and outputs are applied to each module on the personal
computer. Commercial tools can be used to simulate the
running conditions of the modules. Visual Studio® and
Microsoft Excel® were used on the development
environment in this project. Fig. 3 shows the
developer’s module test environment before formal
module test.

Fig. 3. Developer’s Test Environment on PC

873

Transactions of the Korean Nuclear Society Autumn Meeting
PyeongChang, Korea, October 30-31, 2008

Developer’s module test in development environment
is very important before going ahead for formal module
test by the independent verification and validation
(V&V) group, since the functional requirements
assigned to each module can be checked before being
tested on target system. This facilitates debugging of
the software and reduces the efforts for testing-
exception finding process.

2.3 Tests on Target System

The main purpose of module tests on target system is

to check the following features of each module:
 module logic (algorithm implementation)
 deviation in execution environment (proper

function calls, etc.)
 data control (data conversion, etc.)

Test on target system for the software modules is one

of the formal activities commonly followed by the
development groups. A simulator is used to apply test
cases to the target system and read the execution results
from the target system. The software of the simulator
needs to be customized to perform the module test.
Interfaces between the target system and simulator are
specially staged considering the input signal features to
the target system. Interfaces among software modules
on the target system are not tested during the module
test. Logics are checked during the module test.
Software defects found during this test are corrected
and retested afterwards. All software modules need to
pass the test acceptance criteria to go ahead for the
integration (unit) test.

3. Considerations in Tests

There exist major environmental differences between

the development environment and the target system as
follows:

 different processors (CPU’s)
 different compilers and compiling options

Special considerations should be taken to overcome

those environmental differences between development
and test steps as follow.

3.1 Considerations for Tests in Development
Environment and on Target System

 All the software modules are loaded onto the target
system one by one to be tested. The target environment
provides the same hardware and software configuration
for actual operation. Since the personal computers used
for software development are commercial-off-the-shelf
products, the processors of these personal computers
have different data processing features from those of
target system. That is to say, the target system used in
this project adopts TI DSP chips, and they follow IEEE
754 standard for floating point processing, which will

result in different module test outputs for the
development environment and the target system. This
means that special function is coded and called by the
software module during the execution on the target
system. Test of the functionality for the special function
is also required.

3.2 Influences of Test Support Features

Input and output simulator is used to apply inputs to
the target system and get the test results. The simulator
has different environment from the target system, and
hence needs adjustment of data types. For this project,
NI DAQ® board is used for sending and receiving data
to and from the target system. Interface between these
two environments is implemented using HDL serial link,
which requires additional coding of interface function
block modules for appropriate testing. Software control
flags are also needed to apply many test case sets
simultaneously. Consideration to overcome the
differences of data resolutions between the target
system and the simulator should also be taken.

3.3 Recommendation of enhanced module test

Module test requires many efforts for fault-finding of
the software modules. Corrections of function blocks
and test cases occur many times during the tests.
Developer’s test during development environment
before the release of the software for the formal module
test is very effective to reduce the required resources
and test period. The differences in the features of
development environment and the target system will
decide the easiness of developer’s test, but essentially
reduce the overall efforts to successfully develop the
safety critical software.

4. Conclusions

Complex safety critical software for nuclear power

plants needs to be tested through several steps.
Developer’s test can, before verification test, reduce the
trial-and-errors during test phase activities. For
developer’s test for the software modules, commercial
tools such as Microsoft Visual Studio® and Microsoft
Excel® can be used on the PC-based development
environment. The environments of development and
test are different from each other, and hence, it is
needed to consider key factors such as data operation
for applying test cases. The efforts of developers for
test before verification test will also increase the
reliability of the software system.

REFERENCES

[1] IEEE Std 754-1985, IEEE Standard for Binary Floating-
Pont Arithmetic.
[2] John Robbins, Debugging Applications for Microsoft .net
and Microsoft Windows, Microsoft Press, 2003.

874

	분과별 논제 및 발표자

