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1. Introduction 

 
As a part of the Ministry of Knowledge Economy 

(MKE) project, “Development of safety analysis codes 
for nuclear power plants”, KOPEC has been developing 
the hydraulic solver pilot code package applicable to 
the safety analyses of nuclear power plants (NPP’s). 

The matrices of the hydraulic solver are usually 
sparse matrices.  

It is well known that a direct solution method works 
well for a matrix system with 500 unknowns or less. 

The facts that the system of matrix is a sparse one 
and that the position indices of non-zero elements are 
the same in subsequent solutions present more merit of 
applying direct solution methodology. 

In this project, one of the typical direct matrix solver 
packages MA48 has been selected as matrix solver 
[1,2] for the application to hydraulic solver. 

The selection was based on the results of test 
applications of its former version MA28 [3] and on the 
reasonably reliable performance experience of MA18 
[4] applied to RELAP computer code.  

 
2. Methods and Results 

 
In this section the direct solution methodology, error 

bounds and the application strategies are described.  
 

2.1 The Upper Bounds of Decomposition Errors 
 
In solving a set of matrix equation Ax=b by 

applying the direct solution method, as the 
decomposition process continues, the error may buildup. 
This error buildup can be described as: 

 
  A+E = LU  (1) 
 
where 

A = the original matrix 
 x  = the unknown vector 

b = the right-hand-side (RHS)/ source vector 
E = the error matrix of decomposition 
L = the lower triangular matrix 
U = the upper triangular matrix. 

 
Rewriting this for the elements, 
 

aij
(k) = aij -    k<i<n,  k<j<n. (2) im 
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Using Holder’s generalization of Schwarz’s 
inequality, the upper bound on the largest element 
encountered during the decomposition, Reid’s 
inequality relationship [5] can be obtained as follows: 

 
|eij| ≤  3.01 ρ ε  mij (3) 

 
where 

ρ = the largest element modulus of the  
matrices encountered in the elimination 

 ε   = the machine precision 
 mij = the number of operations on position  
         (i,j) during the decomposition 
 eij = the element of E in position (i,j). 
 

2.2 The Relative Error Bounds of Decomposition  
 
Dividing both sides of the inequality relationship (3) 

by |aii| to obtain the relative error bound, 
 
 |eij|/ |aii|≤  3.01 [ ρ /|aii|]ε  mij. (4) 
 
 

2.3 Residual Refinement 
 

J.K. Reid pointed out that the satisfactory bound does 
not guarantee an accurate solution. This problem arises 
due to the conditioning of the problem. A good 
accuracy can be obtained by employing the iterative 
refinement [6]: 

 
LU δ (k)  = b - A x(k)  (5) 
x(k+1)  = x(k) + δ (k)  k= 0, 1, …  
 

commencing with x(0) = 0. 
  
Test results of the routines developed by Marlow and 

Reid have shown that the iteration could almost always 
be terminated at k = 2 or 3, usually 2. 

As a conclusion, Reid recommended that this 
iteration may also be used to avoid a fresh 
decomposition in case where the modulus is moderately 
large. And that, if however, the modulus is so large that 
the process would not converge, then there is no 
alternative but to compute a fresh pivot sequence taking 
account of the numerical values of the matrix 
coefficients.  

 
 

2.4 Machine-dependant Calculation Error and Strategy 
of Applying the Direct Solution Method 
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From the inequality (4), to keep the maximum value 

of relative error within a given value, or the right-hand-
side limit, RHSL ≤  cε , the following condition must 
be met: 

 
g  g≤ c    (6) 

 
where 
 

g = [ ρ /|aii|] mij      (7) 

gc = c cε    (8) 
c = 1/(3.01 ε ).   (9) 

 
The growth of calculation error may depend on the 

machines with different allocations to the exponent part 
and quotient part of the memory. 

For a 64 bit machine allocating 52 bits for quotient, 
for example, the above equation becomes 

 
c = 1.49x1015 for 64 bit memory. (10) 
 

Likewise, for a 16 bit machine allocating 10 bits for 
quotient and for a 32 bit machine allocating 24 bits for 
quotient, for example, the coefficient of RHS in 
equation (9) can be replaced by 1.49x102 and by 
5.57x106, respectively. i.e. 

 
c = 1.49x102 for 16 bit memory; (11) 
c = 5.57x106 for 32 bit memory. (12) 

 
It is easy to figure out that even two digit accuracy 

for decomposition is very tight to achieve in a 16 bit 
operation, while ten-digit accuracy can be easily 
achieved without much burden in a 64 bit operation. 

Considering the decomposition accuracy, cε = 10-2, 
10-3, 10-6 and 10-10 for example, the user can estimate 
what kind of margin for growth he or she can play with 
in this process. As the machine accuracy increases, the 
accuracy of decomposition is well guaranteed in this 
process. Again, this does not mean that the solution 
accuracy is also guaranteed, since good decomposition 
accuracy does not necessarily mean that the new matrix 
system with old pivot sequence is still well-conditioned. 
This means that 1ε can be larger than 2ε (g1 can be 
larger than g2, accordingly) for a high accuracy 
machine. This means that the user has to regularly 
check the residual to see if the solution is still accurate, 
even when there seems to be no problem. 

Once the machine accuracy is determined, the user 
can set-up the strategy of checking the growth of 
decomposition error and switching the solution option 
when necessary. Since the growth of error comes from 
the bit truncation, it is recommended to check the 
solution accuracy every time when the g-factor 
increases certain factor of times greater than the first 

case. The user may decide the size of this factor as 2m to 
match the character of bit operation. 

The solution accuracy can be evaluated by regularly 
checking if the next value is small enough: 

 
rm = |  -  max

i ib ij j
j

a x∑ |  (13) 

 
 

2.5 Results  
 
The method has been tested with typical 10x10 

matrix equation on 64-bit machine. The result shows 
calculation accuracy of 14 digits as expected from the 
above relationships. 
 

3. Conclusions 
 

The test results have shown that the direct solution 
methodology applied to the hydraulic solver package 
being developed works well with typical test cases. 
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