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1. Introduction 

 
Various research and code development have been 

carried out to solve the time-dependent neutron 
diffusion problems by means of the nodal method from 
30 years ago[1,2]. But there is still the need for faster and 
yet more accurate multi-group nodal kinetics codes to 
achieve more readily high-fidelity coupled simulation 
of neutronic and thermal/hydraulic behaviors in 
advanced cores. In this regard, a multigroup nodal 
kinetics code named RENUS is being developed at 
Seoul National University.  

Last year, the flux solver of RENUS employing the 
source expansion nodal method (SENM) within a two-
level coarse mesh finite difference (CMFD) 
formulation[3] was developed and verified for steady-
state applications. It was shown that SENM provided  
accurate and efficient solutions for multigroup 
problems. This work here is to add a transient 
calculation capability to the RENUS code retaining the 
basic flux solution framework. The newly developed 
capability is tested for a MOX core transient benchmark 
problem involving multigroup group cross sections and 
thermal-hydraulic feedback. 
 

2. Methods 
 
2.1 CMFD Formulation for transient problem 

 
A multigroup transient problem consists of a time-

dependent neutron balance equation and a precursor 
balance equation as follows:  
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where g and k denote the indices of energy group and 
precursor’s group. λ and β are the decay constant and 
the delayed neutron fraction. 

Integration of the balance equations over a node m 
and division by the node volume are performed to 
obtain spatially discretized equations. In this process, 
the CMFD relation can be introduced. Spatially 
discretized matrix forms of the two equations are 
expressed simply as follows.  
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The temporal discretization is also performed using the 
theta method as follows: 
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At the new time point n+1, all terms placed on the RHS 
of Eq. (5) are known. In 1n

g
+s , the delayed neutron 

source term included and coupled with the precursor 
balance equation. The precursor equation is to be 
solved before solving Eq. (5). With integrating factor, 
the solution is obtained simply as the following.  
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In this work, the unknown function of fission source 
( )m tψ ′  from tn to tn+1 is assumed as a quadratic form as 

the following. 
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With the delayed neutron source term expressed in 
terms of the fission sources, the linear system of Eq. (5) 
has a similar form to the steady-state one and thus it can 
be solved with same solution module.  
 
2.2 Transient Nodal Solution 
 

The transient nodal calculation starts with the time-
dependent 1-D neutron balance equation and precursor 
equation which are obtained by spatial discretization 
and transverse integration as follows for each node:  
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With a temporal discretization of the neutron balance 
equation and the analytic solution of the precursor 
equation, the final form of the time-dependent neutron 
balance equation can be obtained as the same form as 
the form used in steady-state calculation as the 
following. 
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 where l denotes source iteration of SENM and stz(z) is 
transient specific source term which is approximated to 
quadratic polynomials and its coefficients are obtained 
by using the average values of adjacent nodes. 
Therefore, the transient nodal kernel can be 
implemented simply by merely adding the transient 
specific source term into the steady-state coding. 
 

3. Results 
 
In order to examine the accuracy of the transient 

calculation method introduced above, two benchmark 
problems were solved by the RENUS code. The first 
one is the well known two-group benchmark problem, 
NEACRP A1[4]. The other one is Part 4 of the NEA 
MOX transient benchmark problems[5] provided with 
2G, 4G and 8G cross sections.  

As shown in Table 1, the RENUS transient 
calculation generated essentially the same solution as 
the reference solution. The difference in the peak time 
and power is less than 0.01 sec and 4.18%, respectively. 
The error of the power integral is 0.80%. 

Table 2 shows the results for the NEA MOX 
transient benchmark with various numbers of energy 
group. Since no reference solution is given for this 
problem, no error information is given in the table. 
Only two-group solutions were available for codes 
other than PARCS and RENUS. It is noted that the 
multigroup results give higher peak power than two-
group. Nonetheless but the difference in the power 
integral between the two-group and multigroup results 
is only about 1~2 %-sec. This means that the 
multigroup effect is not as serious as originally 
expected. 
 

Table 1. NEACRP A1 Results 
 

 Ref. RENUS Rel. Error (%)
Boron Conc. (ppm) 561.2 561.3 0.02 
Peak Time (sec) 0.538 0.543 - 
Peak Power (%) 126.8 121.5 -4.18 

Power Integral (%-sec) 111.7 112.6 0.80 
Final Fuel Temp. (K) 952.5 956.9 0.47 
Final Cool.  Temp. (K) 566.4 566.5 0.02 
 

Table 2. NEA MOX Results 
 

CODE Peak Time  
(sec) 

Peak Power  
(%) 

Power Intg.  
(%-sec) 

CORETRAN 0.33 166 26.4 
NUREC 0.36 139 28.4 

PARCS 2G 0.34 142 27.2 
PARCS 4G 0.33 152 27.8 
PARCS 8G 0.32 172 29.1 

SKETCH-INS 0.34 144 28.0 
RENUS 2G 0.36 146 28.3 

RENUS 4G 0.34 169 29.4 
RENUS 8G 0.34 197 30.4 

 
 

Fig 1. Power behavior for NEA MOX Benchmark Prob. 
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4. Conclusion 
 

A multigroup calculation capability based on the 
source expansion nodal method and the two-level 
CMFD formulation was developed and verified. The 
transient results for the NEACRP A1 and NEA MOX 
transient benchmark problems indicate that the transient 
capability of the RENUS code works properly. 
However, the effect of the multigroup calculation 
turned out not to be serious than expected. 
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