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impeller, the distorted flow decreases the momentum of 
fluid as it is mixed with the nominal flow as shown in 
Fig. 3 

 

 
(a) Static pressure blade loading at the impeller 

 

 
(b) Relative velocity distribution at the impeller 
 

Fig.3 Detailed performance characteristics of the RCP at the 
operating condition 

 
In the performance curves dimensionless variables 

are applied to more effectively express different 
combinations of several physical values such as volume 
flow rate (Q[m3/s]), rotational velocity (ω[rad/s]), total 
head (H[m]), density (ρ[kg/m3]) and shaft power 
(Pshaft[W]). φ, ψ, τ and η mean respectively the flow 
coefficient, pressure coefficient, power coefficient and 
pump efficiency and are calculated [2,3] as.  

 

φ ൌ  ଵ଴ൈQ
னDమ౪

య      (1) 

ψ ൌ ଵ଴ൈ୥H
னమDమ౪

మ      (2) 

τ ൌ ଵ଴଴ൈP౩౞౗౜౪
஡னయDమ౪

ఱ     (3) 

η ൌ ஡୥QH
P౩౞౗౜౪

     (4) 

 
Fig. 4 presents these values given the flow coefficient. 

The maximum efficiency is 84.64% at flow coefficient 
0.496. The efficiency at the operating point is 84.16%. 
The total head is 9.5 m larger than the net positive 

suction head (NPSH) of the RCP, and the creation of 
cavitations will be prevented. 

 

 
Fig. 4 Performance characteristic curve 
 

4. Conclusions 
 

The pump performance is analyzed at the off-design 
points. It is an extension from previous analysis at the 
operating and design points. 

The result of this analysis is regarded as appropriate 
from the standpoint of performance curves of a general 
mixed-flow pump for the most part. Low flow region 
has difficulties concerning convergence for numerical 
analysis. 

Results from this study may be used for experimental 
setup of the RCP. The results will help operate the RCP 
in APR1400 as well. 
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