
Transactions of the Korean Nuclear Society Autumn Meeting
PyeongChang, Korea, October 30-31, 2008

Verification Factors of Programmable Logic Design for Digital Instrumentation and Control
System

G. Y. Parka, C. H. Jungb and D. I. Kima

a Instrument & Control Division, Korea Institute of Nuclear Safety, 19 Kusong-dong, Yuseong, Daejeon, Korea.
b Research Division, Korea Institute of Nuclear Safety, 19 Kusong-dong, Yuseong, Daejeon, Korea.

{k703pgy, k148jch, dikim}@kins.re.kr

1. Introduction

As analog equipments in the nuclear power plant
become obsolete, digital upgrades of nuclear facility are
becoming popular. As a part of this trend, the
programmable logic component, i.e., CPLD (Complex
Programmable Logic Device) and FPGA (Field
Programmable Logic Device) adopted in a nuclear
facility is gradually increasing because of its flexibility.
In this circumstance, the verification activity is an
important part of programmable logic design to
guarantee error-free product. Therefore, this paper
addresses the important factors in the verification
activity such as verification coverage goal, verification
coverage measurement.

2. Verification Factors on Programmable Logic
Design

In the programmable logic design, the objective of

verification is ensuring the functional correctness of
design [1, 2, 3, 4]. Namely, the verification is a process
to demonstrate that the intent of a design is successfully
preserved in its implementation [4]. However, because
of the increasing complexity of the design, verification
process is becoming more and more difficult to ensure
the functional correctness of design. In this chapter, we
demonstrate the important issues in the verification
activity.

2.1 Verification Coverage Goal

In the verification activity, it is difficult to determine
how much verification efforts are enough. In other
words, knowing how long it will take to complete the
verification activity is an important issue. To obtain a
qualified product, it is reasonable to determine coverage
goal. For example, the logic design having 90 percent
of verification coverage is more confident than that
having 50 percent. However, there are some factors to
determine the coverage goal. The first is verification
cost. In the previous example, the former needs more
cost than that of the latter because of a trade-off
relationship between the cost of verification and the
coverage goal. The second is exponentially increasing
test cases [6]. For example, in the case of the logic
design having 8 inputs and 100 percent verification
coverage goal, the number of test cases is 28 or 256 test
cases. If the logic design includes 8 inputs with 4
internal state and 100 percent coverage goal, the test

cases are 2048. In this issue, U.S NRC (Nuclear
Regulatory Commission) defines a simple digital device
as having 100 percent verification coverage [6]. And,
for the simple digital device, every possible
combination of inputs and internal state are tested and
all outputs are verified for every case.

2.2 Verification Methodology

Choosing a verification methodology suitable for the
design property is an important issue in verification
activity. Therefore, the verification plan should clearly
state which parts of the design will be subjected to code
or functional coverage. The code coverage is a
verification methodology identifying which code has
been verified or not. The code coverage includes 4
types of coverage metric – statement, condition, and
path coverage. The statement coverage measures how
many lines of the source code are verified in the
verification process. Similarly, the condition coverage
identifies which conditions are executed in the
verification activity and the path coverage verifies that
every possible route in the code been executed. The
code coverage is a necessary in the verification activity
because it is easy to implement and to achieve the
coverage goal. However, it is not sufficient as a reliable
verification methodology because the code coverage
would not ensure the functional correctness. Therefore
additional coverage methodology such as functional
coverage is required to verify functional correctness.

The functional coverage ensures whether the
implementation is accordance with the requirement
specification. Therefore, functional coverage metrics
are derived from the functional or design specification.
For collecting functional coverage metrics, the
additional design effort such as assertion-based design
is required in the implementation process. Contrary to
the code coverage, it is difficult to implement the
functional coverage. Furthermore, nowadays, there are
no sufficient software tools for the functional coverage.
However, there is an effort for the industrial unified
hardware description and verification language
(HDVL) such as IEEE Std 1800, “IEEE Standard for
SystemVerilog-Unified Hardware Design, Specification,
and Verification Language.” [7]

2.3 Verification Coverage Measurement

In order to measure progress of verification activity,
verification coverage is measured in terms of metric.
Therefore, coverage metric is essential in measuring

845

Transactions of the Korean Nuclear Society Autumn Meeting
PyeongChang, Korea, October 30-31, 2008

verification coverage [8]. As shown in Fig. 1, the
verification metrics are classified into two categories –
metric kind and source. The metric kind is either
explicit or implicit. The implicit coverage metric is
inherent in the abstraction level of verification target
such as HDL code structure or coding style. The
explicit coverage metric is usually derived from
specification or implementation. For example, CRC,
frame length, execution mode or addressing mode in
the specification could be an explicit metric. The metric
source is either specification or implementation. The
specification metric is a metric derived from the
specification.

Each of coverage metrics is used to observe device
functions from a different perspective as shown in Fig.
1. The specification functional coverage indicates what
features in the specification to be verified. Therefore
the specification functional coverage covers input,
output and internal interfaces described in the
specification. The implicit specification coverage
indicates how much of the device specification has been
exercised. However, there are coverage metrics which
is difficult to implement.

3. Conclusion

According to increasing the use of programmable
logic component adopted in a nuclear facility, the
verification activity is essential in the programmable
logic design. Furthermore, because of the increasing
design complexity, the verification process requires
more time and effort to ensure the functional
correctness of design. In this circumstance, the factors
such as verification coverage goal, methodology and
coverage measurement & analysis are becoming
significant in the verification activity. Therefore, these
issues are dominant factor to perform verification
activity successfully. The design should be precisely
examined in the verification factors. According to the

derived result, a verification plan should be established
and described in the view of the coverage issues.

 Metric Kind

 Implicit Explicit
Sp

ec
ifi

ca
tio

n

Implicit
Specification

Coverage

Specification
Functional
Coverage

M
et

ri
c

So
ur

ce

Im
pl

em
en

ta
tio

n

Code
(or Structural)

Coverage

Implementation
Functional
Coverage

Figure 1. Verification Coverage Metric.

REFERENCES

[1] J. A. Cercone, M. A. Beims, and K. G. McGill,
Verification and Validation of Programmable Logic Devices,
National Aeronautics and Space Administration, 2004.
[2] DOT/FAA/AR 95/31, Design, Test, and Certification
Issues for Complex Integrated Circuits, Federal Aviation
Administration, 1996.
[3] T. D. Tessier, Rethinking Your Verification Strategies for
Multimillion-Gate FPGAs, XAPP408, Xilinx, 2002.
[4] J. Bergeron, Writing Testbenches: Functional Verification
of HDL Models, Kluwer Academic Publishers, 2000.
[5] J. Bergeron, Writing Testbenches using SystemVeliog,
Springer, 2006.
[6] T.W. Jackson, “Licensing of Simple Digital Devices”,
ICAPP08, 2008.
[7] IEEE Std 1800, IEEE Standard for SystemVerilog-Unified
Hardware Design, Specification, and Verification Language.
[8] Andrew Piziali, Functional Verification Coverage
Measurement and Analysis, 2004

846

	분과별 논제 및 발표자

