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1. Introduction 

 

With the rapid development of digital computer and 

information processing technologies, nuclear I&C 

(Instrument & Control) system which needs safety-

critical function has adopted digital technologies. 

Software used in safety-critical system must have high 

dependability. Software testing and V&V activities are 

very important for assuring high software quality. If we 

can predict the risky module of safety-critical software, 

we can focus testing activities and regulation activities 

more efficiently. 

In this paper, we present an estimating model of risky 

module during early software lifecycle using support 

vector machines (SVM). SVM is very attractive model 

for solving both classification and regression problems. 

SVM has been applied in many applications 

successfully. We use software matrices and risk level of 

each module for input variables (feature spaces). We 

can get these information during requirement phase, 

design phase and development phase. 

This paper is organized as follows. Section 2 

describes related research and Section 3 describes 

architecture for estimating risky modules. Section 4 

shows the experiment which includes environment and 

results.  Section 5 concludes the paper. 

 

2. Related Research and Background 
 

2.1 Software Matrices 

 

From now, there have been many researches for 

searching relationships between software matrices and 

software faults. There are two categories for estimating 

software faults using software matrices. One is using 

statistical techniques and the other is using machine 

learning. For example, the models which used statistical 

classification techniques are Discriminant Analysis and 

Factor Analysis and which used machine learning 

classification techniques are decision trees, artificial 

neural networks, support vector machines and etc. Many 

parts of these researches had treated finding the subset 

of the software matrices that are most likely to predict 

the existence of faults. But, relationships between 

software metrics and fault-proneness are often complex. 

 

2.2 Support Vector Machines (SVM) 

 

Support Vector Machines (SVM) are kernel based 

learning machines that introduced by Vapnik in 1995[1, 

4]. SVMs used structural risk minimization principle 

(SRM) for minimizing the generalization error and they 

can generalize the high dimensional feature spaces using 

small training sample data.  

 
Figure 1 Basic concept of a SVM  

 

Figure 1 shows the linear separation of two classes by 

SVM in two-dimensional spaces. The hyperplane 

corresponding to 0=+⋅ bxw  is optimal hyperplane. 

Optimal hyperplane corresponds to the one that 

minimizes the training error and has the maximal 

margin. In order to generalize to the case where the 

input spaces can not separate the two classes properly, a 

hyperplane is established in high dimensional feature 

space and the nonlinear classification is replaced by a 

linear classification problem. If the dimensionality of 

the new feature space is sufficiently high, the data will 

always be linearly separable. For supporting nonlinear 

mapping into feature space, the kernel function is used. 

The most common kernel functions are linear, 

polynomial, gaussian, and sigmoid. 

 

3. Architecture  

 

Figure 2 shows the overall architecture for estimating 

risky module using SVM. First, we must select training 

datasets according to characteristics of target 

application.  

 

 
Figure 2 Architecture for estimating risky module using 

SVM  
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Characteristics of applications are methodologies, 

languages, program size, operating environments, and 

etc. Next, we execute SVM Learner and SVM Classifier 

using selected training dataset and generated Data 

Model using target datasets in order. Prediction results 

are estimated risk classes of each module. 
 

4. Experiment 

 

4.1 Datasets and Experiment Environment 

 

In this study, we used two safety-critical NASA 

software projects because they can be publicly 

accessible. We used two datasets that are CM1 and PC1. 

CM1 is NASA spacecraft instrument software 

consisting of 20KLOC. PC1 is flight software for an 

earth orbiting satellite consisting of 40KLOC. Both are 

written in C language. Each dataset includes the 

information about the risk level of requirements which 

is represented from 1 to 3 and also contains the 

relationship between the requirements and modules. For 

the experiments, we constructed three test cases which 

contained different input variables. Input variables in 

Case 1 are from Elish’s research [2], input variables in 

Case 2 are from Gondra’s research [3], and input 

variables in Case 3 are all software matrices which 

described in NASA datasets. We added the risk level to 

the input variables for estimating risk class. We defined 

the estimated risk class Rm  as follows : 
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Risk_Levelr is risk level of each module and 

Error_Countm is the number of error which the module 

has. In this experiment, α is 4 and β is 10. We used that 

tradeoff value C between the maximization of the 

margin and minimization of the training error was 5000 

and kernel for the SVM was linear. We used MATLAB 

and SVM
multiclass Version 2.12 [5] to conduct this study. 

 

4.2 Result Analysis 

 

After training each dataset using training data, we 

classified test dataset. In case CM1 dataset, after 253 

training cycles, the classification error rate (zero/one-

error) is 22.13%, 21.34% and 35.18% for each test case. 

In case PC1 dataset, after 554 training cycles, the 

classification error rate is 15.52%, 16.06% and 26.90% 

for each test case.  The classification error rate of the 

Case1 and Case 2 are similar, but the Case 3’s is a little 

bit big. Table 1 and Table 2 show the results of the 

classification. We can compare the distribution of 

estimated risk classes of test cases and original risk 

class of the test dataset. The Case 3 has big 

classification error rate but we can use the classification 

results more effectively. We can consider that the 

modules which belong to Risk Class 4 and Risk Class 5 

are relatively more risky. 

 
Table 1 Distribution of estimated risk classes (CM1 dataset) 

Risk 

Class 
Case 1 Case 2 case 3 

Test Dataset 

(original) 

1 
245 

(78.35%) 

252 

(99.60%) 

200 

(79.05%) 

201 

(79.45%) 

2 
5  

(10.24%) 
0 35 (13.83%) 

31 

 (12.25%) 

3 1 (0.40%) 0 5 (1.97%) 11 (4.35%) 

4 
1  

(0.40%) 

1 

(0.40%) 

13  

(5.14%) 

6 

 (2.37%) 

5 1 (0.40%) 0 0 3 (1.19%) 

 

Table 2 Distribution of estimated risk classes (PC1 dataset) 

Risk 

Class 
Case 1 Case 2 case 3 

Test Dataset 

(original) 

1 552 

(99.64%) 

547 

(98.74%) 

420 

(75.81%) 

470 

 (84.99) 

2 0 

(0 %) 

0 

(0 %) 

97 

 (17.51%) 

41  

(7.41) 

3 2 

(0.36%) 

3 

(0.54%) 

26 

(4.69%) 

33 

 (5.97) 

4 0 

(0 %) 

4 

(0.72%) 

11  

(0.99%) 

8 (1.45) 

5 0 (0 %) 0 (0 %) 0 (0 %) 2 (0.36) 

 

5. Summary 

 

In this paper, we classified the estimated risk class 

which can be used for deep testing and V&V. We 

predicted the risk class for each module using support 

vector machines. We can consider that the modules 

classified to risk class 5 and 4 are more risky than others 

relatively. For all classification error rates, we expect 

that the results can be useful and practical for software 

testing, V&V, and activities for regulatory reviews. 

Future, for improving the practicality, we will have to 

investigate other machine learning algorithms and 

datasets. 
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