
Transactions of the Korean Nuclear Society Autumn Meeting

PyeongChang, Korea, October 30-31, 2008

Estimation of Risky Modules in Safety-Critical Software

Y. M. KIM and C. H. Jeong

Korea Institute of Nuclear Safety

Ymkim@kins.re.kr

1. Introduction

With the rapid development of digital computer and

information processing technologies, nuclear I&C

(Instrument & Control) system which needs safety-

critical function has adopted digital technologies.

Software used in safety-critical system must have high

dependability. Software testing and V&V activities are

very important for assuring high software quality. If we

can predict the risky module of safety-critical software,

we can focus testing activities and regulation activities

more efficiently.

In this paper, we present an estimating model of risky

module during early software lifecycle using support

vector machines (SVM). SVM is very attractive model

for solving both classification and regression problems.

SVM has been applied in many applications

successfully. We use software matrices and risk level of

each module for input variables (feature spaces). We

can get these information during requirement phase,

design phase and development phase.

This paper is organized as follows. Section 2

describes related research and Section 3 describes

architecture for estimating risky modules. Section 4

shows the experiment which includes environment and

results. Section 5 concludes the paper.

2. Related Research and Background

2.1 Software Matrices

From now, there have been many researches for

searching relationships between software matrices and

software faults. There are two categories for estimating

software faults using software matrices. One is using

statistical techniques and the other is using machine

learning. For example, the models which used statistical

classification techniques are Discriminant Analysis and

Factor Analysis and which used machine learning

classification techniques are decision trees, artificial

neural networks, support vector machines and etc. Many

parts of these researches had treated finding the subset

of the software matrices that are most likely to predict

the existence of faults. But, relationships between

software metrics and fault-proneness are often complex.

2.2 Support Vector Machines (SVM)

Support Vector Machines (SVM) are kernel based

learning machines that introduced by Vapnik in 1995[1,

4]. SVMs used structural risk minimization principle

(SRM) for minimizing the generalization error and they

can generalize the high dimensional feature spaces using

small training sample data.

Figure 1 Basic concept of a SVM

Figure 1 shows the linear separation of two classes by

SVM in two-dimensional spaces. The hyperplane

corresponding to 0=+⋅ bxw is optimal hyperplane.

Optimal hyperplane corresponds to the one that

minimizes the training error and has the maximal

margin. In order to generalize to the case where the

input spaces can not separate the two classes properly, a

hyperplane is established in high dimensional feature

space and the nonlinear classification is replaced by a

linear classification problem. If the dimensionality of

the new feature space is sufficiently high, the data will

always be linearly separable. For supporting nonlinear

mapping into feature space, the kernel function is used.

The most common kernel functions are linear,

polynomial, gaussian, and sigmoid.

3. Architecture

Figure 2 shows the overall architecture for estimating

risky module using SVM. First, we must select training

datasets according to characteristics of target

application.

Figure 2 Architecture for estimating risky module using

SVM

885

Transactions of the Korean Nuclear Society Autumn Meeting

PyeongChang, Korea, October 30-31, 2008

Characteristics of applications are methodologies,

languages, program size, operating environments, and

etc. Next, we execute SVM Learner and SVM Classifier

using selected training dataset and generated Data

Model using target datasets in order. Prediction results

are estimated risk classes of each module.

4. Experiment

4.1 Datasets and Experiment Environment

In this study, we used two safety-critical NASA

software projects because they can be publicly

accessible. We used two datasets that are CM1 and PC1.

CM1 is NASA spacecraft instrument software

consisting of 20KLOC. PC1 is flight software for an

earth orbiting satellite consisting of 40KLOC. Both are

written in C language. Each dataset includes the

information about the risk level of requirements which

is represented from 1 to 3 and also contains the

relationship between the requirements and modules. For

the experiments, we constructed three test cases which

contained different input variables. Input variables in

Case 1 are from Elish’s research [2], input variables in

Case 2 are from Gondra’s research [3], and input

variables in Case 3 are all software matrices which

described in NASA datasets. We added the risk level to

the input variables for estimating risk class. We defined

the estimated risk class Rm as follows :

mrri CountErrorLevelRiskLevelRiskR _*__ += (1)

otherwise

R

R

LevelRisk

LevelRisk

LevelRisk

R i

i

r

r

r

m β
βα

>

≤<








+

+

=

_

2_

1_
 (2)

Risk_Levelr is risk level of each module and

Error_Countm is the number of error which the module

has. In this experiment, α is 4 and β is 10. We used that

tradeoff value C between the maximization of the

margin and minimization of the training error was 5000

and kernel for the SVM was linear. We used MATLAB

and SVM
multiclass Version 2.12 [5] to conduct this study.

4.2 Result Analysis

After training each dataset using training data, we

classified test dataset. In case CM1 dataset, after 253

training cycles, the classification error rate (zero/one-

error) is 22.13%, 21.34% and 35.18% for each test case.

In case PC1 dataset, after 554 training cycles, the

classification error rate is 15.52%, 16.06% and 26.90%

for each test case. The classification error rate of the

Case1 and Case 2 are similar, but the Case 3’s is a little

bit big. Table 1 and Table 2 show the results of the

classification. We can compare the distribution of

estimated risk classes of test cases and original risk

class of the test dataset. The Case 3 has big

classification error rate but we can use the classification

results more effectively. We can consider that the

modules which belong to Risk Class 4 and Risk Class 5

are relatively more risky.

Table 1 Distribution of estimated risk classes (CM1 dataset)

Risk

Class
Case 1 Case 2 case 3

Test Dataset

(original)

1
245

(78.35%)

252

(99.60%)

200

(79.05%)

201

(79.45%)

2
5

(10.24%)
0 35 (13.83%)

31

 (12.25%)

3 1 (0.40%) 0 5 (1.97%) 11 (4.35%)

4
1

(0.40%)

1

(0.40%)

13

(5.14%)

6

 (2.37%)

5 1 (0.40%) 0 0 3 (1.19%)

Table 2 Distribution of estimated risk classes (PC1 dataset)

Risk

Class
Case 1 Case 2 case 3

Test Dataset

(original)

1 552

(99.64%)

547

(98.74%)

420

(75.81%)

470

 (84.99)

2 0

(0 %)

0

(0 %)

97

 (17.51%)

41

(7.41)

3 2

(0.36%)

3

(0.54%)

26

(4.69%)

33

 (5.97)

4 0

(0 %)

4

(0.72%)

11

(0.99%)

8 (1.45)

5 0 (0 %) 0 (0 %) 0 (0 %) 2 (0.36)

5. Summary

In this paper, we classified the estimated risk class

which can be used for deep testing and V&V. We

predicted the risk class for each module using support

vector machines. We can consider that the modules

classified to risk class 5 and 4 are more risky than others

relatively. For all classification error rates, we expect

that the results can be useful and practical for software

testing, V&V, and activities for regulatory reviews.

Future, for improving the practicality, we will have to

investigate other machine learning algorithms and

datasets.

REFERENCES

[1] Burges, C., A Tutorial on Support Vector Machines for

Pattern Recognition, Data Mining and Knowledge Discovery,

1998

[2] Karim O. Elish, Mahmoud O. Elish, Predicting defect-

prone software modules using support vector machines, The

Journal of Systems and Software 81(2008) 649-660

[3] I. Gondra, Applying machine learning to software fault-

proness prediction, The Journal of Systems and Software 81

(2008) 186-195

[4] Steve R, Gunn, Support Vector Machines for

Classification and Regression, Technical Report, University of

Southampton, 10 May 1998.

[5] http://svmlight.joachims.org/svm_multiclass.html

886

	분과별 논제 및 발표자

