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1. Introduction 

 
Recently, the lattice Boltzmann method (LBM) has 

gained much attention for its ability to simulate fluid 

flows, and for its potential advantages over a 

conventional CFD method. The key advantages of LBM 

are, (1) suitability for parallel computations, (2) absence 

of the need to solve the time-consuming Poisson 

equation for a pressure, and (3) an ease with multiphase 

flows, complex geometries and interfacial dynamics 

may be treated[1].  

To study the effect of the mobility coefficient Γ and 

the width of the interface layer, two stationary bubbles 

without a collision are considered. The gap of the two 

bubbles is taken as 4, while the width of the interface 

(w) and the mobility coefficient Γ are varied. In the 

present work, the lattice Boltzmann model for 

multiphase flows proposed by Zheng et al. [4] is used 

for simulating two stationary bubbles without a collision. 

By adopting a finite difference gradient operator of a 

sufficient isotropy, the spurious currents can be made 

smaller. The main objective of the present work is to 

establish the lattice Boltzmann method as a viable tool 

for the simulation of  multiphase or multi-component 

flows.      

 

2. Methods and Results 

2.1 Methodology 

 

Here, we consider a flow with two phases which have 

different densities. The low density and high density are 

noted as Lρ and Hρ  respectively. The flow can be 

described by the Navier-Stokes equations and an 

interface evolution equation as [4]  
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where Mθ  is called mobility, φµ  is the chemical 

potential, P is the pressure tensor, bF
ρ

is the body force, 

and n, φ are defined as 
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where Aρ and Bρ are the density of fluid A and fluid B 

respectively.   

Under the lattice Boltzmann framework, Eq. (1) can 

be solved by iterating the evolution equation for a set of 

distribution functions. These distribution functions 

evolve with a modified lattice Boltzmann equation and 

BGK approximation, 
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where ig  is the distribution function, iΩ is the 

collision term, φτ  is the dimensionless single relaxation 

time, ie  is the lattice velocity, and q is a constant 

coefficient.  

In Eq. (3), the term P⋅∇  is related to the surface 

tension force. This force can be rewritten as a potential 

term, 
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where 
2

0 sncp = , sc is the speed of sound.  

The potential form for the surface tension force is 

adopted to keep the energy conservation. 

Mathematically, the potential form and stress form are 

identical. However, numerically, the discretization error 

is different[2,3,4]. Thus, it is useful to eliminate 

spurious currents. 

The lattice Boltzmann implementation of Eqs. (2) and 

(3) can be described as  
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The equilibrium distributions satisfy the conservation 

laws as  
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The details are Ref. [4].  

The chemical potential is chosen as 

φκφφφµφ
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Following the same procedure as [4], we can obtain the 
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profile along the normal direction of the interface 
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Where ζ is the coordinate which is perpendicular to 

the interface, and w is the thickness of the interface 

layer, 
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For a flat interface, the surface tension coefficient can 

be evaluated by Rowlinson and Widom[5]. 
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We can obtain the surface tension coefficient as 
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2.2 Results 

 

The computational domain is taken as 120x120. 

Initially, two circular bubbles with Radius R (=20) are 

located with a gap of d (=4). Fig. 1 shows numerical 

results for the two cases. At first, we set the width of the 

interface layer as w=2.0, and Γ =40. Next, the width of 

the interface layer was set as w=3.0, and Γ =400. It can 

be easily observed that the two bubbles do not merge at 

any time in the case of w=2.0. If the gap of the two 

bubbles is smaller than 2w, the two bubbles eventually 

merge without a collision [Fig. 1 (b)] .  
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(a) Results of two stationary bubbles without collision 

(w=2, d=4, Γ =40, density ratio=1000, 1=σ ). 
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(b) Results of two stationary bubbles without collision 

(w=3, d=4, Γ =400, density ratio=1000, 1=σ ). 

 

Fig. 1. Interface contour of  two stationary bubbles.  

 

3. Conclusion 

 

For the two stationary bubbles without a collision, it 

was found that the distance (gap) between the bubbles 

and the interface width are major factors to decide 

whether the two bubbles will merge together or not. 

When the gap of the two bubbles is larger than 2w, the 

two bubbles will not merge. Otherwise, they will merge 

together. In this last case, a larger mobility coefficient 

Γ  makes the two bubbles merge together more quickly. 

A lattice Boltzmann method for multiphase flows with a 

high density ratio is developed in this paper. It can be 

easily implemented for the three dimensional case with 

a topology change.  
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