
Transactions of the Korean Nuclear Society Spring Meeting
Gyeongju, Korea, May 29-30, 2008

Personal Supercomputing for Monte Carlo Simulation Using a GPU

Jae-Yong Oh, Yang-Hyun Koo, Byung-Ho Lee
 Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejon, 305-600

 tylor@kaeri.re.kr

1. Introduction

Since the usability, accessibility, and maintenance of
a personal computer (PC) are very good, a PC is a
useful computer simulation tool for researchers. It has
enough calculation power to simulate a small scale
system with the improved performance of a PC’s CPU.
However, if a system is large or long time scale, we
need a cluster computer or supercomputer.

Recently great changes have occurred in the PC
calculation environment. A graphic process unit (GPU)
on a graphic card, only used to calculate display data,
has a superior calculation capability to a PC’s CPU as
shown in Fig. 1 [1]. This GPU calculation performance
is a match for the supercomputer in 2000 [2]. Although
it has such a great calculation potential, it is not easy to
program a simulation code for GPU due to difficult
programming techniques for converting a calculation
matrix to a 3D rendering image using graphic APIs [1].

In 2006, NVIDIA provided the Software
Development Kit (SDK) for the programming
environment for NVIDIA’s graphic cards, which is
called the Compute Unified Device Architecture
(CUDA) [1]. It makes the programming on the GPU
easy without knowledge of the graphic APIs.

This paper describes the basic architectures of
NVIDIA’s GPU and CUDA, and carries out a
performance benchmark for the Monte Carlo simulation.

Fig. 1. Floating-Point Operations per Second for the

CPU and GPU [1].

2. GPU and CUDA

The GPU on the recent NVIDIA’s graphic card is
implemented as a set of multiprocessors. Each
multiprocessor has a Single Instruction, Multiple Data
architecture (SIMD): At any given clock cycle, each
processor of the multiprocessor executes the same
instruction, but operates on different data [1].

When programmed through CUDA, the GPU is
viewed as a compute device capable of executing a very
high number of threads in parallel [1]. It operates as a
coprocessor to the main CPU, or host. The batch of
threads that executes a kernel is organized as a grid of
thread blocks as shown in Fig. 2 [1]. Fig.2 also shows
several memory types in the GPU.

Fig. 2. Memory model [1].

3. Random Number Generation

The Monte Carlo simulation needs a large quantity of
random numbers. Usually, a simple random number
generator, lrand48 function, is used for the simulation
in the PC. The random number generation algorithm for
GPU was also proposed [3]. The benchmark shows that
both random number generators produce the identical
results and GPU is very faster than CPU. For the
generation of 1,228,800 random numbers, the lrand48
function takes 27.13 seconds and GPU takes 2.60
seconds, which consists of the calculation time (0.14
seconds) and the data transfer time from GPU’s
memory to PC’s memory (2.41 seconds). Since it
reveals that the bottleneck for the performance
improvement is the memory bandwidth for a data
transfer, the performance can be improved more by
maintaining all the data in the GPU’s memory.

243

Transactions of the Korean Nuclear Society Spring Meeting
Gyeongju, Korea, May 29-30, 2008

4. Microstructure Simulation

The microstructure simulation with the Potts model is
chosen for the representative example of the Monte
Carlo simulation. The Potts model in this paper defines
a microstructure as two-dimensional 960×960
triangular lattices with a periodic boundary condition.
Each site at the lattice has a state among 64 states,
which represents a grain orientation.

All data necessary for the simulation are located in
the global memory on the graphic card and only the
final results are transferred into the PC’s memory for
outputs. Each thread on GPU corresponds to each re-
orientation attempt and the GPU executes these threads
with its stream processes in parallel.

Fig. 1 shows the performance benchmark of the GPU
compared with that of Intel Q6700 CPU. As the
simulation time increases, the performance increases up
to 110 times. This performance enhancement allows a
PC to simulate larger systems with longer time which
was almost impossible in the PC.

100 1000 10000
40

50

60

70

80

90

100

110

120

130

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t (

tim
es

)

Time (MCS)

Fig. 3. Performance improvement with the GPU.

5. Conclusion

The performance benchmark shows that the GPU

accelerates the Monte Carlo simulation greatly. It
allows a PC to simulate larger systems with a longer
time which was almost impossible in a PC.

Acknowledgments

The Ministry of Education, Science and Technology
(MEST) of the Republic of Korea has sponsored this
work through the Mid- and Long-term Nuclear R&D
Project.

REFERENCES

[1] NVIDIA, CUDA Programming Guide Version 1.1, 2007.
[2] http://www.top500.org.
[3] J.A. van Meel, A. Arnold, D. Frenkel, S. F. Portegies
Zwart and R. G. Belleman, arXiv:0709.3225

244

	분과별 논제 및 발표자

