
A Preliminary Verification and Validation (V&V) Methodology for the Artifacts
Programmed with a Hardware Description Language (HDL)

Yong Suk Suh a∗, Jong Yong Keum a, Je Youn Park a, Ki Ho Jo b, Chang Whan Jo b

aKorea Atomic Energy Research Institute, 1045, Daedeokdaero, Yuseong, Daejeon 305-303, Republic of Korea
bControl Technology Research Institute, Samchang Enterprise Co., Ltd.,974-1 Goyeon-ri Woongchon-myon, Ulju-

gun, Ulsan 689-871, Republic of Korea
*Corresponding author: yssuh@kaeri.re.kr

1. Introduction

Nowadays, the FPGA (Field Programmable Gate
Array) is widely used in various fields of industry. The
FPGA was evolved from the technology of PLD
(Programmable Logic Device). The FPGA provides
more logic gates than the PLD, which integrates
millions of programmable logic gates into a chip. It also
provides a massive, fast and reliable processing
performance. So, we can integrate a system’s functions
into a FPGA, which can be a SoC (System on Chip).
Furthermore, we can make a FPGA-based DSP, which
DSP functions are implemented with a FPGA. With
these merits, the FPGA is also used in the nuclear
industry. For example, the safety-critical I&C
component is manufactured with the FPGA.

The FPGA is programmed with a HDL. The quality
of the artifacts programmed with a HDL can impact on
the quality of a FPGA. When a hazard fault exists in the
artifact of a FPGA and is activated during its operation,
an accident caused by the fault in the FPGA occurs. So,
it is necessary to ensure the quality of the artifacts.

This paper, for the purpose of applying it to the
SMART (System-integrated Modular Adavanced
ReacTor) MMIS project, is to present a preliminary
V&V methodology for HDL programmed artifacts. For
this, we reviewed the following items:

- Characteristics of HDL programming
- Applicable requirements for a HDL program

used for the safety-critical systems
- Fault modes of a FPGA

Based on the review, we establish the preliminary V&V
methodology.

2. Characteristics of a HDL Programming

The HDL programming is to arrange logic gates such
as AND, OR, NOT, FLIP-FLOP to describe behaviors
of the gates in a FPGA. IEEE 1076-1993 for VHDL or
IEEE 1364-2001 for Verilog are published as standards
for this programming. It is programmed with an editing,
synthesis, simulation and implementation sequence.
There are two ways of editing a program: a text-based
and a graphic-based. The text-based programming can
be done with a pseudo-C syntax. The graphic-based
programming can be done with a combination of logic
gates. There are so many tools for the programming
such as ISE, QUARTUS, LABVIEW, State Diagram
Editor, SystemC, etc. Most tools provide both the text-
based and the graphic-based programming
environments. They also provide IP (Intellectual
Property) to enhance the programming performance.

Since a HDL programming is possible with the pseudo-
C syntax, the following structured programming
features can be achieved:

- Top-down design approach
- Modulization (or process-based design)
- Bottom-up build is also possible

Whereas the C programming is to obtain a computation
result, the HDL programming is to describe an
electrical signal flow in a chip via logic gates. In the
HDL programming, the programmers usually use a
simulation method to verify the correctness of their
logics. There are several phases of simulation: RTL
(Register Transfer Level) simulation with a synthesized
program, functional simulation with netlists, and timing
simulation with an image in a FPGA. The works of
editing and simulating a HDL programming is
iteratively and concurrently performed until the artifacts
are ensured by the programmers.

3. Requirements for a HDL Program used for the
safety-critical systems

The HDL program is a part of firmware. In IEEE 7-
4.3.2-2003, the firmware is defined as “the combination
of a hardware device and computer instructions and
data that reside as read-only software on that device.”
From this sentence, we understand that the firmware
includes a hardware device and software. The standard,
however, does not describe design criteria only for the
firmware; instead it states “V&V activities and tasks
shall include system testing of the final integrated
hardware, software, firmware, and interfaces.” With the
two statements above, V&V activities for the firmware
should include those of the hardware and software. The
hardware part of the firmware should be qualified in
accordance with the design criteria of the hardware and
the software part in accordance with the software
design criteria. For the software design criteria, the
standard states “Computer software shall be developed,
modified, or accepted in accordance with an approved
software quality assurance (QA) plan consistent with
the requirements of IEEE/EIA 12207.0-1996.” The
standard also requires the performance of a
configuration management, a commercial dedication,
and a hazard analysis for the firmware.

4. Fault modes of a FPGA

We considered fault modes of a FPGA in terms of a
hardware fault and a software fault. The hardware fault
mode is usually related to a short or open in circuits of a

Transactions of the Korean Nuclear Society Spring Meeting
Gyeongju, Korea, May 29-30, 2008

875

mailto:yssuh@kaeri.re.kr

FPGA. This fault is caused by a manufacturing defect
or degradation during an operation. Stuck-at-faults
(Stuck-at-0 and Stuck-at-1) are these type of faults.
Baraza[1] and Jun Seok Lee[2] presented mechanisms
to detect these type of faults. The software fault mode is
a type of design error caused by humans. In order to
reduce the design error, we need to not only educate
more reliable humans but also make the artifact more
fault tolerable. Whatever we take, we must assume
there exists at least a design error in an artifact. The
purpose of the V&V is to detect the design error.

5. A Preliminary V&V Methodology for a HDL
program

We can assume that a HDL programming is the same
case as we usually do in a generic programming. If this
assumption is acceptable, the HDL programming
should be qualified in accordance with IEEE/EIA
12207.0-1996. The fulfillment of IEEE/EIA 12207.0-
1996 can be certified with CMMI-SW(Capability
Maturity Model Integration-Software), SPICE(Software
Process Improvement and Capability dEtermination),
or ISO (International Organization for Standardization)
9001.[3] However, the CMMI-SW and the SPICE are
not widely used in the nuclear industry.

As a minimum requirement, we require that HDL
programmed artifacts be developed in accordance with
the SMART MMIS SDLC (Software Development Life
Cycle) that consists of the following phases: a concept,
plan, requirement, design, implement, integration and
validation, installation, and operation and
maintenance.[4] In the SDLC, V&V activities are
defined with the following activities: a review, test and
analysis. These are required at each phase of the SDLC.

The most significant thing in a HDL programming is
that it is hard to read the source code, to follow the flow
of a signal, and to understand the whole package due to
a highly complicated combination of logic gates.
Because of these characteristics, it is required to
perform the V&V activities to detect the faults.

There are two types of review activities: a walk-
through and an inspection. The walk-through is an
informal review activity, whereas the inspection is a
formal activity. The performance of the review
activities depends on the hardware experts. Checking
the traceability between artifacts in a higher phase and
artifacts in a lower phase is a key activity in the review.

As minimum testing activities, a unit testing,
integration testing, and system testing should be
performed. There are two types of techniques for each
testing: a white-box testing and a black-box testing. The
white-box testing focuses on the following coverages: a
statement coverage to identify a dead code, a branch
coverage to identify a faulty condition, and a toggle
coverage to identify an unsigned value.[5] The black-
box testing usually depends on the use of a simulation.
The scenario for the black-box testing is as follows:
applying a sequence of inputs, capturing the output
response, comparing the response with an expected

response, and analyzing the discrepancies between
them. A test pattern (or a test vector) should be
generated for the testing. During the simulation, a delay
time should be checked throughout the signal flow from
an input to an output. It is necessary to inject a test
routine into a source code to check a physical defect
such as the stuck-at-faults. This routine can be designed
with a Boolean difference equation.

For a HDL programming, three types of modeling
are applied as follows: a behavioral modeling including
a concurrent modeling and a sequential modeling, a
data flow modeling, and a structural modeling. And
optimization technique such as a Karnaugh map is also
applied in order to reduce the number of gates and the
delay time in a circuit. The analysis activity checks if
the optimization meets its requirements. During the
analysis, logical proof is possible. However, it is hard to
check the correctness of a timing sequence including
the delay time. The performance of the analysis sorely
depends on human fidelity.

6. Conclusions

A HDL programming is based on the knowledge of
the hardware and software. The hardware knowledge is
more important than software for the programming. The
V&V for it should reflect this characteristic. This paper
presents three activities for the V&V methodology: a
review, test and analysis. Although this methodology is
not applied to a practical FPGA design, it will be
applied to a firmware design for the SMART MMIS
safety systems. This paper does not present enough
fault modes for a HDL program. We need to investigate
and collect faults which have occurred during a HDL
programming. It is necessary to study how the contents
of a requirement specification can be traced through a
design and implementation of the firmware.

REFERENCES

[1] Baraza, J.C., Gracia, J., Gil, D., Gil, P.J., “A prototype of
a VHDL based fault injection tool: description and
application”, Journal of Systems Architecture 47 (10), 2002,
pp. 847–867.
[2] Jun Seok Lee, Man Cheol Kim, Poong Hyun Seong, Hyun
Gook Kang, Seung Cheol Jang, “Evaluation of error detection
coverage and fault-tolerance of digital plant protection system
in nuclear power plants”, Annals of Nuclear Energy 33 (2006),
pp 544–554.
[3] Yong Suk Suh, Heui Youn Park, Ki Sung Son, Ki Hyun
Lee, Hyeon Soo Kim, “A Method to Improve the Software
Acceptance Criteria for Nuclear Power Plants”, Trans. KNS
Autumn Meeting, Korea, Oct. 2005.
[4] Yong Suk Suh, Jae Hong Park, In Soo Koo, Jong Myung
Kim, Dong Cheol Park, Hyeon Soo Kim, “A Development of
SDLC for MMIS of SMART Research Reactor”, Trans. KNS
Autumn Meeting, Korea, Oct. 2004.
[5] David Dempster, Michael Stuart, “Verification
Methodology Manual, 3rd Edition Techniques for Verifying
HDL Designs”, (ISBN 0-9538-4822-1), Teamwork
International, 2002.

Transactions of the Korean Nuclear Society Spring Meeting
Gyeongju, Korea, May 29-30, 2008

876

	분과별 논제 및 발표자

