
Transactions of the Korean Nuclear Society Spring Meeting

Kyungju, Korea, May 29-30, 2008

Countermeasures of SMART Digital Plant Protection Systems (DPPS) against CCF

Jong Yong Keum, Gwi Sook Jang, Yong Suk Suh, Heui Youn Park

I&C and HF Div., KAERI, 150-1 Dukjin-dong, Yuseong-gu, Daejon, Korea, 305-353, jykeum@kaeri.re.kr

1. Introduction

Common Cause Failure (CCF) is the concurrent

failure of two or more functional units (structures,

systems or components) due to a single specific event or

cause. This CCF can not credit an independence of

redundant channels of safety equipment or multiple

critical systems in nuclear power plants. This paper

presents countermeasures of System-integrated Modular

Advanced ReacTor (SMART) DPPS against CCF

caused by digital faults for the purpose of meeting an

independence of redundant channels of SMART DPPS.

2. Common Cause Failure Mechanism

Fig. 1 shows a CCF mechanism. Digital failure is a

systematic failure resulting from the activation of a

digital fault. Digital faults and triggering conditions are

indispensable conditions which lead to digital CCFs.

The effect of a digital fault is latent but contributes to a

failure mechanism. If a triggering condition is satisfied,

a digital fault results in a digital failure.

Fig. 1. CCF mechanism

3. Digital fault classes and their failures

In this paper, it is assumed that the defenses against

digital CCFs focuses on digital faults. These digital

faults can be categorized into four classes - specification

faults, hardware faults, software faults, and hardware-

related software faults. Fig. 2 shows the digital system

failure categories resulting from these digital faults

3.1 specification faults

In high quality software, digital failures tend to be

predominantly caused by specification faults. As a main

cause of them, Thuy [1] indicates a lack of

understanding - specifiers do not fully understand or

know the context of an Instrumentation & Control

(I&C) system. This specification fault produces wrong

specification for the requirements, architecture, and

design of a system from real world requirements. The

focus should be on unsafe system failures, not software

errors. Error-free software can easily introduce unsafe

behaviors (not necessarily failures) if it is built to a

flawed requirements specification [2]. Therefore, the

validation of functional specification prior to a software

implementation and testing is very important in

reducing a CCF.

Fig. 2. System failure categories

3.2 hardware faults

Keene and Lane [3] investigate the failures of the

same type of circuit cards. The interesting observation

was that these failures did not fit the random failure

models. These failures were deterministic and resulted

from a defect in a design. Thus, a design defect is also

an important cause of hardware failures. If this hardware

design defect occurs at the same time, it may disable

redundant channels of digital I&C safety systems.

Defensive measure against hardware design defect is

design diversity because different designs will have

different failure modes and will not be susceptible to the

same common influences. And as an alternative to

design diversity, equipment diversity (e.g., Intel 80x86

architecture versus Motorola 68000) can be selected.

3.3 software faults

Software faults (or hardware-unrelated faults) are

faults in those software modules that are unrelated to the

hardware components. These faults are ‘pure’ software

faults.

Software design errors and coding errors are main

factors of CCFs due to a software. The most effective

diversity against these CCFs is a human diversity and

next is a software diversity. Although diverse software

versions are developed by using different specifications,

designs, programming teams, programming languages,

etc, many researchers have revealed that those

independently developed software versions do not

necessarily fail independently [4].

3.4 Hardware-related software faults

Hardware-related software failures are mostly caused

by the degradation of hardware and the design defects

of software. In this case, hardware components are

partially failed, but the system can still perform normal

operations (in a degradation manner) if workload is not

very high. However, if workload is high for the system

905

Transactions of the Korean Nuclear Society Spring Meeting

Kyungju, Korea, May 29-30, 2008

and the hardware degradation is undetected by the

software, then the software may try to perform

operations on the failed hardware components and the

system fails. This kind of software failure is considered

as a hardware-related software failure. A good software

design should avoid hardware-related software failures.

4. Countermeasures of SMART DPPS against

CCFs

As countermeasures of CCFs against wrong

functional specifications which may be caused by

MMIS (Man-Machine Interface System) Design Team,

independent reviews of functional specifications by

other design groups (Core Design Group, Fluid System

Design Group, and BOP Design Group) which provide

the functional requirements are performed during

SMART DPPS development [5].

Currently, each channel of the SMART DPPS

adopts a Digital Signal Processor (DSP)-based hardware

platform. Software modules which perform safety

functions were developed with assembly language in

favor of a verification and validation of software codes.

And each channel will be designed to be diverse dual

processors. One of diverse dual processors is

TMS320Cx processor of Texas Instruments Co., the

other is SHARC processor of Analog Devices, Co.

For a software diversity, two different operating

systems can be selected to prevent a CCF which is latent

in an operating system in digital I&C system adopting

diverse dual processors inside each channel. But such a

selection can increase a system complexity due to

interactions between an operating system and hardware,

and between an operating system and safety system

software modules.

Because generally, companies of commercial

operating systems do not open their sources, a

verification & validation of operating system in safety

aspects is very difficult. So, in SMART DPPS, very

simple deterministic scheduling software modules were

developed and used instead of an operating system. This

shows specific design features (no use of operating

system) can be used instead of software diversity (use of

different operating systems in this case) to assure an

independence. Additionally, by no use of operating

system, we can have advantages to avoid a system

complexity and to facilitate a CCF analysis.

The CCFs due to hardware-related software faults

may be protected by good software design features.

That is, these design features in Table I may protect the

CCFs caused by interactions between hardware and

software.

5. Conclusions

In brief, we looked into the classes of digital faults

and countermeasures against them. Following

conclusions are deduced:

(1) Based on an appropriate engineering judgement,

determining what types of design features and

diversities against CCFs are effective in reducing the

likelihood of CCFs;

(2) the use of diversity does not assure an

independence of redundant channels. In order to assure

the independence, specific design features must be

credited in addition to diversity;

(3) diverse dual processors and two other operating

systems can increase system complexity.

Table I : Countermeasures of SMART DPPS against

CCF

 Countermeasures

Specification

fault

Independent Reviews with other

Design Groups

Hardware

fault

equipment diversity

- TMS320Cx processor-based DSP

- SHARC processor-based DSP

(variable)

Software fault Extensive V&V

Different program languages

- assembly language

- C/C++ language (variable)

Hardware-

related

software fault

Defense against this fault may not

need diversity.

Only software design features listed

below may be required.

- Minimal use of interrupts

- Avoidance/removal of deadlocks

REFERENCES

[1] N. Thuy, “Defense against Digital CCF”, IAEA

Technical Meeting on Common-Cause Failures in

Digital Instrumentation and Control Systems of Nuclear

Power Plants, Bethesda, Maryland, USA 19-21 June

2007

[2] Ray Totro, “Integrated strategy for managing

vulnerability to common cause failures”, IAEA

Technical Meeting on Common-Cause Failures in

Digital Instrumentation and Control Systems of Nuclear

Power Plants, Bethesda, Maryland, USA 19-21 June

2007

[3] S. Keene and C. Lane, “Combined Hardware and

Software Aspects of Reliability”, Quality and Reliability

Engineering International, Vol.9, 1992, pp 419-426

[4] Yu Hayakawa, Telba Irony, and Min Xie, “System

and Bayesian Reliability”, World Scientific Publishing

Co. Pte. Ltd., 2001

[5] I. S. Koo, “Design of Man-machine Interface

Systems for SMART considering CCF”, IAEA

Technical Meeting on Common-Cause Failures in

Digital Instrumentation and Control Systems of Nuclear

Power Plants, Bethesda, Maryland, USA 19-21 June

2007

906

	분과별 논제 및 발표자

