Densification Enhancement in AUC UO₂ Pellet with High Lubricant Content

Yong Woon Kim^{*}, Dong-Joo Kim, Young Woo Rhee, Jae Ho Yang, Jong Hun Kim, Ki Won Kang, Keon Sik Kim

Innovative Nuclear Fuel Division, Korea Atomic Energy Research Institute,

1045 Daedeok-daero, Yuseong, Daejeon 305-353, South Korea

*Corresponding author: kimyw@kaeri.re.kr

1. Introduction

In a fabrication process of a UO_2 annular pellet, the accuracy and the precision of the pellet dimension is very important. For an improvement of the dimension deviation, the addition of 1.0 wt% zinc stearate was performed in the process. The improvement is to decrease an axial deviation of the diameter in an annular pellet. Lubrication with a suitable lubricant (zinc stearate) reduces a friction between the die wall and the compact[1]. As a result, the in-homogeneity of the density distribution in the compact can be reduced.

However, the sintered density of UO_2 pellets is decreased. The addition of various dopants in UO_2 has been tried as a way to increase the density of UO_2 pellets, without having a higher sintering temperature or a longer sintering time. The effects of some additives on the grain growth and densification have been widely studied.

Some researchers have studied the effects of sintering additives such as Al_2O_3 , TiO_2 and Cr_2O_3 -SiO_2. Assmann et al. [2] showed that a simply mixed UO₂-Gd₂O₃ powder was able to be sintered up to 95%TD by adding Al_2O_3 . It is reported that $Al(OH)_3$ and TiO_2 have a beneficial effect on the densification of the UO₂-Gd₂O₃ pellets [3]. Kim et al. [4] have investigated the role of a composite additive, Cr_2O_3 -SiO₂, and they also observed an enhanced densification of the UO₂-Gd₂O₃ pellets. All the above additives increased the sintered density after a final-stage sintering [5].

In order to improve the sintered density drop due to the addition of 1.0 wt% zinc stearate, in this paper, it was described that the effect of TiO_2 as an additive on the sintered density of a UO₂ solid pellet.

2. Experimental and Results

AUC UO₂ powder was mixed with various contents of high purity titania powders for 1 h and 1.0 wt% zinc stearate for 0.5 h in a tumbling mixer. The powder mixture was compacted with a pressure of 460 MPa. The green density was fixed at ~5.9 g/cm³ to minimize an unexpected effect. The green pellets were sintered at 1730°C for 4 h in flowing H₂ gas. Samples of UO₂ and UO₂ containing 0.05, 0.1, 0.2, and 0.3 wt% TiO₂ were prepared.

The density of the sintered pellet was measured by using an immersion method. Sintered pellets of UO_2 and UO_2 containing TiO₂ were prepared for a metallographic examination by a mounting, grinding, polishing and etching. The density-measured pellet was cut in the axial direction. And then a grinding and polishing process was performed. To observe the grain structure, a thermal etching for the polished samples was carried out at 1250 °C for 2h in a flowing CO₂ atmosphere. The microstructure of the samples was observed by an optical microscopy. The grain size of the sample was measured by using the linear intercept method.

Figure 1 shows the sintered density of AUC UO_2 pellets as a function of the TiO₂ content.

Figure 1. Sintered density of AUC UO_2 pellets with a various TiO_2 content.

It shows that the sintered density increases with an increasing TiO₂ content and it was saturated at ~10.61 g/cm³. The sintered density of the 0.3 wt% TiO₂ added pellet was increased by more than 0.4 g/cm³ when compared to undoped UO₂ pellet.

Figure 2. The grain structures of AUC UO₂ pellets (\times 200); (a) undoped, (b) 0.3 wt% TiO₂

The grain structures of the UO_2 sintered pellet are shown in Figure 2. The grain size of the undoped UO_2 pellet is about 7 µm. Those of the TiO₂-doped UO_2 pellets increased with an increasing TiO₂ content. In the case of the 0.3 wt% TiO₂-doped UO_2 pellet, its grain size increased up to about 63 µm. It's rise is nine times as large as the undoped UO_2 pellet. An increasing tendency of the grain size is similar to that of the sintered density. The pores were located at the grain boundary.

Figure 3 shows the pore structures of the UO_2 pellets. A pore of a round shape was formed with an increasing TiO_2 content, and the number of micro-pores was remarkably decreased.

Figure 3. The pore structures of AUC UO₂ pellets (×200); (a) undoped, (b) 0.30 wt% TiO₂

3. Conclusion

In order to improve the sintered density drop due to the addition of 1.0 wt% zinc stearate, the effect of TiO_2 as an additive on the sintered density of a UO₂ solid pellet was investigated.

As a result, the sintered density and grain size increased with an increasing TiO₂ content. In the case of the 0.3 wt% TiO₂-doped UO₂ pellet, the sintered densities and the grain size was increased by up to 10.61 g/cm³, 63 μ m, respectively. A pore of a round shape was formed with an increasing TiO₂ content, and the number of micro-pores was remarkably decreased.

ACKNOWLEDGEMENT

The authors acknowledge that this work has been performed under the Nuclear Mid- and Long-term R&D Projects supported by the Ministry of Education, Science and Technology in Korea.

REFERENCES

[1] N. Özkan, B.J. Briscoe, Overall Shape of Sintered Alumina Compacts, Ceramics International, Vol.297, p.207-211, 1997

[2] H. Assmann, M. Peehs, H. Roepenack, Survey of binary oxide fuel manufacturing and quality control , Journal of Nuclear Materials, Vol.153, p,115-126, 1988.

[3] K.W. Kang, K.S. Kim, K.W. Song, J.H. Yang, Y.H. Jung, Effect of TiO_2 and $Al(OH)_3$ on Sintering Behavior of UO_2 -Gd₂O₃ Fuel Pellets J. Kor. Nucl. Soc, Vol.32, p.559-565, 2000.

[4] K.S. Kim, K.W. Song, K.W. Kang, J.H. Yang, J.H. Kim, Sintering of a Mixture of UO_2 and Gd_2O_3 Powders Doped With Cr_2O_3 -SiO₃, J. Kor. Nucl. Soc, Vol.33, p.386-396, 2001. [5] Y.W. Rhee, K.S. Kim, K.W. Song, Densification kinetics of MnO-doped UO_2 -10 wt%Gd₂O₃ compact, Thermochimica Acta, Vol.455, p.80-85, 2007.