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1. Introduction 

 
PWRs (Pressurized Water Reactors) generally operate 

in the nucleate boiling state. However, the conversion of 

nucleate boiling into film boiling with conspicuously 

reduced heat transfer induces a boiling crisis that may 

cause the fuel clad melting in the long run. This type of 

boiling crisis is called Departure from Nucleate Boiling 

(DNB) phenomena.  

Because the prediction of minimum DNBR in a reactor 

core is very important to prevent the boiling crisis such 

as clad melting, a lot of research has been conducted to 

predict DNBR values [1-3]. The object of this research 

is to predict minimum DNBR applying support vector 

regression (SVR) by using the measured signals of a 

reactor coolant system (RCS). 

 The SVR has extensively and successfully been 

applied to nonlinear function approximation like the 

proposed problem for estimating DNBR values that will 

be a function of various input variables such as reactor 

power, reactor pressure, core mass flowrate, control rod 

positions and so on. The minimum DNBR in a reactor 

core is predicted using these various operating condition 

data as the inputs to the SVR. The minimum DBNR 

values predicted by the SVR confirm its correctness 

compared with COLSS values. 

 

2. Support Vector Regression 

  

In this work, the SVR is used to predict the minimum 

DNBR. The basic concept of the SVR is to nonlinearly 

map the original data x  into a higher dimensional 

feature space. The SVR considers a regression function 

of the following form: 
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The function )(xiφ  is called the feature. Equation (1) 

is a nonlinear regression model because the resulting 

hyper-surface is a nonlinear surface hanging over the 

m -dimensional input space. The parameters w  and b  

are a support vector weight and a bias that are 

calculated by minimizing the following regularized risk 

function: 
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The constants λ  and ε  are user-specified parameters 

and ( , )iy f
ε

− x w  is called the ε -insensitive loss 

function [4]. The loss equals zero if the estimated value 

( , )f x w  is within an error level ε , and for all other 

estimated points outside the error level ε , the loss is 
equal to the magnitude of the difference between the 

estimated value and the error level ε  (see Fig. 1). That 
is, minimizing the regularized risk function is 

equivalent to minimizing the following constrained risk 

function: 
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subject to the constraints  
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Fig.1. The parameters for the support vector regression. 
 

The constrained optimization problem of Eq. (3) can 

be solved by applying the Lagrange multiplier technique 

to Eqs. (3) and (4) and then by using a standard 

quadratic programming technique. Finally, the 

regression function of Eq. (1) becomes 

( )

( )

*

1

*

1

( ) ( ) ( )

              ( , )

=

=

= = − +

= − +

∑

∑

x φ x φ x

x x

N
T

i i i

i

N

i i i

i

y f b

K b

α α

α α

 (5) 

where )()(),( xφxφxx i
T

iK =  is called the kernel 

function. A number of coefficients *
ii αα −  are nonzero 

values and the corresponding training data points have 

approximation error equal to or larger than ε . They are 
called support vectors. 

The performance of the SVR depends heavily on the 

three kinds of design parameters such as the insensitivity 

zone ε , the regularization parameter λ , and the kernel 

function parameters.  
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4. Application to the minimum DNBR estimation 

 

The proposed algorithm was applied to the first fuel 

cycle of Yonggwang unit 3 PWR plant (YGN-3). The 

hot pin DNB data was obtained by running the 

MASTER and COBRA codes [5]. The DNB data 

comprise a total of 18816 input-output data pairs 

( )ryxxx ,,,, 921 Λ  that can describe the reactor core 

states appropriately in the ranges of the input variables. 

1x  through 9x  are the input signals that represent the 

reactor power, core inlet temperature, coolant pressure, 

mass flowrate, axial shape index (ASI), R2, R3, R4, and 

R5 control rod positions, and ry  is the output signal 

which indicates the minimum DNBR in the reactor core. 

ASI is defined as 

TB

TB

PP

PP

+

−
 where BP  is the bottom-

half power of a nuclear reactor and TP  is the top-half 

power.  

The DNB data are divided into the training and test 

data sets. The training data were selected using a 

subtractive clustering method [6]. The SVR models 

which were designed for the positive ASI and the 

negative ASI has been trained for the two DNBR data 

sets.  

Table 1 summaries the DNBR calculation results by 

the support vector regression. If ASI value is positive, 

the RMS error is 0.34% and the relative maximum error 

is 3.04%. Also, if the ASI value is negative, the RMS 

error is 0.32% and the relative maximum error is 5.44%. 

 

Table 1. DNBR calculation results by the SVR. 

 

Table 2 shows DNBR values by the proposed method 

and the COLSS. The DNBR values acquired by a 

proposal method are almost the same as those of 

MASTER code and this means that the SVR is very 

accurate. The DNBR values estimated by the proposed 

method are much larger than those of COLSS. The 

considerable difference between values of the proposed 

method and COLSS is caused by the conservative 

calculation of COLSS. 

 

4. Conclusion 

 

In this paper, a support vector regression has been 

applied to estimate the minimum hot pin DNBR in the 

reactor core. The proposed algorithm is trained by using 

the data set prepared for training (training data) and 

verified by using another data set different from the 

training data. 

The support vector regression was applied to the first 

fuel cycle of YGN-3. The RMS errors are 0.34% for 

positive ASI and 0.32% for negative ASI. The support 

vector regression is sufficiently accurate to be used in a 

DNBR protection and monitoring algorithm. In addition, 

comparing the performances of the SVR and the COLSS, 

the DNBR values estimated by the proposed method are 

much larger than those of COLSS, which provides 

significant operating margin.  

 

Table 2. Comparison of DNBR values. 
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Training data Test data 

 Data 
No. 

RMS 
error (%) 

Relative 
maximum 
error (%) 

Data 
No. 

RMS 
error 
(%) 

Relative 
maximum 
error (%) 

Positive 

ASI 
1888 0.0783 0.3525 7520 0.3433 3.0376 

Negative 

ASI 
1915 0.0674 0.1476 7493 0.3224 5.4380 

ASI 

value 
Power 

MASTER 

(target) 

Proposed 

Algorithm  
COLSS 

0.061 80 4.203 4.224 2.921 

0.071 90 3.671 3.681 2.494 

0.082 100 3.243 3.244 2.135 

0.085 103 3.130 3.128 2.039 

-0.515 80 2.833 2.847 2.028 

-0.497 90 2.487 2.492 1.736 

-0.477 100 2.199 2.196 1.501 

-0.472 103 2.123 2.123 1.439 
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