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1. Introduction 

 
The pipe bends and elbows are regarded as critical 

components in piping systems of nuclear power plants 

because they are incorporated into piping systems to 

allow modification of the isometric routing and more 

importantly pipe bends are usually incorporated to 

reduce anchor reaction forces. Also, the pipe bends and 

elbows are capable of absorbing considerably large 

thermal expansion and seismic movement through the 

energy dissipation as a result of local plastic 

deformation so that they maintain the integrity of piping 

system under transiently loading conditions. Significant 

care must be taken to avoid their collapse moment. 

Therefore, it is important to accurately assess the safety 

margin for a collapse of pipe bends and elbows under 

various operating conditions. 

The wall-thinned defect is mainly caused by flow-

accelerated corrosion, and it reduces failure pressure, 

load-carrying capacity, deformation ability, and fatigue 

resistance of pipe bends and elbows. Therefore, it is 

necessary to investigate the effect of wall-thinned 

defects on the failure behavior of pipe bends and elbows 

and to accurately estimate the collapse loads of wall-

thinned bends and elbows under various loading 

conditions. 

 

2. Development of FSVR Model  

 

In this study, an FSVR model was used for accurate 

estimation of collapse moment of wall-thinned pipes. A 

regression problem approximates an unknown function 

that can be expressed as a linear expansion of basis 

functions. The regression problem is transformed to 

determine the coefficients of the basis function of linear 

expansion. The SVR nonlinearly maps the original input 

data x  into higher dimensional feature space, ( )φ x . 

The SVR considers the following regression function: 
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The function ( )φ x
k

 is called the feature and the 

parameters w  and b  are the support vector weight and 

bias. The first term of Eq. (2) characterizes the 

complexity of the SVR models. The FSVR is known as 

support vector regression (SVR) that is equipped with a 

fuzzy concept. The proposed FSVR enhances the SVR 

by reducing the effect of outliers and noise. By applying 

a fuzzy membership function to each data point of the 

SVR model, the regularized risk function can be 

reformulated, such that different input data points can 

make different contributions to the learning of a 

regression function as follows[1]: 
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subject to the constraints  
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where µ
k
 is a fuzzy membership grade. Commonly used 

SVR methods apply an equal weighting to all data 

points. However, FSVR uses different weightings 

according to their importance, which is specified by the 

fuzzy membership grade. The constrained optimization 

problem can be solved by applying the Lagrange 

multiplier technique to Eqs. (2) and (3). 

The appropriate selection of training data is very 

important because it can affect the performance of the 

FSVR model. The input and output training data is 

expected to have many clusters in each group and the 

data at these cluster centers is more informative than the 

neighboring data. An FSVR model for each data set can 

be well trained using the informative data. The cluster 

centers were located using a subtractive clustering (SC) 

scheme and used as the training data set.  

gN  input/output training data ( ),=z xk k ky  in a 

group was assumed to be available and the data points 

were normalized in each dimension. The SC scheme 

begins by generating a number of clusters in ×m N  

dimensional input space. The SC scheme uses a measure 

of the potential of each data point, which is a function of 

the Euclidean distances to all other input data points [2]: 
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where αγ  is a radius to define a particular neighborhood. 

It should be noted that the potential of a data point is 

high when it is surrounded by an abundance of 

neighboring data. After the potential of each data point 
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was calculated, the data point with the highest potential 

was selected as the first cluster center.  

In general, after determining the i -th cluster center 

ci  and its potential value c
iP , the potential of each data 

point is revised using the following equation: 
2 2
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where βγ  is usually greater than αγ  in order to limit 

the number of clusters generated. Equation (6) means 

that an amount of potential is subtracted from each data 

point as a function of its distance from the cluster center. 

The data points near the cluster center have greatly 

reduced potential and are unlikely to be selected as the 

next cluster center. When the potentials of all data 

points have been revised according to Eq. (6), the data 

point with the highest potential is selected as the ( 1)+i th
 

cluster center. These calculations stop if the inequality, 

1ε<c c
iP P , is true, otherwise the calculations are 

repeated. If the calculations are stopped finally at an 

iterative step 
c
N , then there are 

c
N  cluster centers in a 

data group. The input/output data (training data) 

positioned in the cluster centers of the data group will be 

selected to train the FSVR model for each group. In 

addition, every five time-steps, the test data is selected 

from the remaining sequential data where the training 

data has already been eliminated. Hence, the 

optimization data and test data comprise 80% and 20% 

of the remaining sequential data, respectively. 

It is reasonable that the data points with high potential 

calculated by Eq. (5) are more important and weighted 

more highly than the other neighboring data points when 

training the FSAR models. Therefore, the potential of 

the cluster centers calculated by Eq. (5) was used as a 

fuzzy membership grade in Eq. (2) as follows: 
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3. Application of FSVR to Estimation of Collapse 

Moment 

 

The collapse moment of the bends subjected to in-

plane bending can be defined by various methods. The 

wall-thinning defects are located at the intrados and 

extrados centerlines of the pipe bend, and the axial and 

circumferential shapes of defects are circular. Fig. 1 

shows wall-thinned pipes on extrados, but wall-thinning 

can be occurred on intrados or crown occasionally. In 

this study, FSVR model has been developed for more 

accurate estimation of collapse moment. 

There is a little difference according to the defect 

location. But it can be verified that RMS errors decrease 

less than 0.3%. Therefore, their estimation performances 

are very accurate (refer to Table 1).  

The collapse moment estimation was done in a 

previous work [3] by using SVR models that could 

accurately estimate the collapse moment. But the 

estimation performance of the FSVR models has 

improved 30~50% more than the SVR model. It is 

known in this study that the FSVR models can estimate 

the collapse moment more accurately. 

 

 
Fig. 1. Definition of dimensions of wall-thinned defects 

 

Table 1. Estimation results of the FSVR models. 
Defect 

location 
Extrados Intrados Crown Total 

Fitness 0.9288 0.8995 0.9678 - 

Number (No.) of SVs 947 952 205 - 

No. 1361 1361 250 2972 

RMS Error (%) 0.2098 0.2420 0.0849 0.2140 
Training 

Data 
Max error (%) 2.8201 2.6766 0.1022 2.8201 

No. 282 282 51 615 

RMS Error (%) 0.2155 0.2715 0.1367 0.2346 
Optimization 

Data 
Max error (%) 0.8279 0.8970 0.5927 0.8970 

No. 57 57 11 125 

RMS Error (%) 0.2543 0.3171 0.1540 0.2741 Test data 

Max error (%) 0.6529 1.4957 0.4050 1.4957 

 

4. Conclusion 

 

In this paper, the FSVR method has been used to 

estimate the collapse moment due to the wall-thinned 

defects of pipes in piping systems. The FSVR models 

have been developed for three data sets divided into the 

three classes of extrados, intrados, and crown defects. 

As a result, it is known that the estimation performance 

of an FSVR method is superior to any other methods. 

Therefore, it is expected that the proposed method can 

be applied to assess the integrity of the wall-thinned 

pipes by estimating their collapse moments very fast and 

accurately. 
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