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1. Introduction 

The Lattice Boltzmann Method (LBM) has been developed for 
application to thermal-fluid problems. Recently, the technique was also 
applied to fluid-structure interaction problems [1]. Most of those studies 
considered a regular shape of lattice or mesh like square and cubic grids. 
In order to apply the LBM to more practical cases, it is necessary to be 
able to solve complex or irregular shapes of problem domains. There 
have been different kinds of approaches to address the problems. The 
most common technique was using the finite volume formulation of the 
lattice Boltzmann equation.[2,3] Another approach was a point-wise 
interpolation technique for irregular grids.[4] Other techniques were 
based on the finite element method. [5,6] 

Generally, the finite element method is very powerful for solving two- 
or three-dimensional complex or irregular shapes of domains using the 
isoparametric element formulation [7] which is based on a mathematical 
mapping from a regular shape of element in an imaginary domain to a 
more general and irregular shape of element in the physical domain. In 
addition, there are variety of choices of finite elements such as triangular 
or quadrilateral shapes in 2-D, or tetrahedral, triangular prism, or general 
six-sided solids in 3-D. As a result, the present study presents a new finite 
element formulation for the lattice Boltzmann equation using the general 
weighted residual technique. Among the weighted residual formulations, 
the collocation method, Galerkin method or method of moments are used 
to develop the finite element based LBM.  

2. Finite Element Based Lattice Boltzmann Method 

The lattice Boltzmann equation is expressed as  
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where fi is the particle velocity distribution function along the α− 
direction, t represents time, αer is the discrete velocity vector along the α− 

direction, and Ωα denotes the collision operator. The discrete velocity 
vector is given below and shown in Fig. 1 for the D2Q9. 

( )
( )

(0,0) 0
cos{( 1) / 2},sin{( 1) / 2} 1 to 4

2 cos{( 1) / 2 / 4}, 2 sin{( 1) / 2 / 4} 5 to 8

e c

c
α

α
α π α π α

α π π α π π α

⎛ =⎜
⎜= − − =
⎜
⎜ − + − + =⎝

r
       (2) 

where c is the lattice speed.  
When a single relaxation time technique is used for the collision 

operator,  the collision operator can be written as 
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where τ is the relaxation constant and 
αf

~  denotes the local equilibrium 
distribution of 

αf . The local equilibrium distribution is 
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in which ρ is the fluid density and vr  is the fluid velocity. They can be 
expressed as 
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Figure 1.   D2Q9 lattice showing discrete nine velocity vectors  
 
 In addition, ωα is the weighting parameter for each velocity direction as 
given below:  
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for D2Q9.             
Substitution of Eq. (3) into Eq. (1) results in 
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In order to derive the Finite Element Lattice Boltzmann Method 
(FELBM) from Eq. (8), the problem domain is discretized into a number 
of finite elements. Then, the variable 

αf  is expressed in terms of the 
interpolation functions and nodal variables as given below: 
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in which iH  is the spatial interpolation function for the nodal variable ifα  
at the i-th node of the finite element, and n is the number of nodes per 
element. In addition, [ ]H  is a row vector consisting of the interpolation 
functions, and { }αf  is a column vector containing unknown solutions at 
the nodes.  Plugging Eq. (9) into Eq. (8) yields  
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for each finite element. The superimposed dot denotes the temporal 
derivative. 

Applying the weighted residual formulation to Eq. (10) gives the 
following expression 

{ } [ ]{ } [ ]{ } [ ]{ } { }( ) 0~1
=⎟

⎠
⎞

⎜
⎝
⎛ −+∇⋅+∑∫ dSffHfHefHw

eS ααααα τ
r&   (11) 

where the integration is conducted over each finite element domain 
eS  

and the summation is performed over the total number of elements.  
Furthermore, { }w  is a column vector of the weighting functions.  The size 

of { }w  is equal to the number of nodes per element.  Rewriting Eq. (11) 
yields 
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Depending on the choice of the weighting functions, the subsequent 
technique can be called the Galerkin method, collocation method, method 
of moments, least-square method, or sub-domain method.  In this study, 
the first three techniques are presented.   

For the Galerkin method, the weighting function is selected to be the 
interpolation functions as used in Eq. (11), i.e. { } [ ]THw = . In this case, 
Eqs. (13) through (15) can be expressed as 
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For the collocation method, the weighting functions are selected to be 
Dirac delta functions. In the present formulation, the Dirac delta functions 
are defined at the nodal points of each element. Therefore, for a 2-D case, 

)()(),( ji yyxxyxw −−= δδ  where xi and yj are the nodal coordinate 

values. On the other hand, for the method of moment the weighting 
functions are chosen to be monomial terms such as xpyq (where p, and q 
are non-negative integers) starting from the lowest order. 

Once the matrix equation of the first order derivative in time, as given 
in Eq. (12), is developed from the weighted residual finite element 
formulation, a numerical time integration scheme is applied to the 
expression. There are many different numerical techniques for time 
integration. Those include, but not limited to, the forward difference 
technique, backward difference technique, Crank-Nicolson technique, 
Runge-Kutta technique, and predictor-corrector technique.  Because of 
computational efficiency, the forward difference technique is selected in 
this study. When we make the matrix [M] a diagonal matrix, the forward 
difference technique becomes an explicit method. As a result, even if a 
small time step size t∆  is used for the forward difference scheme because 
of conditional stability, the overall computation is efficient.  If an 
unconditionally stable method is preferred, the Crank-Nicolson technique 
may be applied. 

Using the forward difference scheme for time integration, Eq. (12) is 
expressed as 
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Equation (21) is solved for the given initial and boundary conditions.   

3. Numerical Results 

The first example was a flow between two co-axial circular cylinders.  
The ratio of the radii between the outer and inner cylinders was three.  
The inner cylinder was kept at rest while the outer cylinder started to 
rotate at a constant angular speed.  The FELBM solution is plotted in Fig. 
2 against the analytical solution.  In the figure, the velocity was 
normalized with respect to the outer cylinder velocity.  In addition, the 
distance was normalized such that the position of the inner cylinder was 
zero while the position of the outer cylinder was unity.  Both the Galerkin 
method and the method of moment were used, respectively, with four-
node quadrilateral finite elements.  The numerical results compare well 
with the exact solution as shown in the figure. 

The second example was a flow in a linearly converging duct. Its 
geometry and mesh is shown in Fig. 3. The pressure difference was 
applied between the left inlet and right outlet. Transient flow analyses 
were conducted using FELBM and the traditional CFD, respectively. 
After 10,000 time steps, the two solutions were compared in Fig. 4, and 
they agree well. 
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Figure 2. Comparison of steady state velocity profile of flow between two 
co-axial cylinders using four-node quadrilateral element.   

 

 
Figure 3. Mesh in converging duct 

 
Figure 4. Comparison of fluid velocity at the center of the duct between 
the LBM and CFD results 

4. Conclusions 

A lattice Boltzmann technique based on the weighted residual finite 
element formulation was developed so that the technique could be applied 
to a complex shape of domain, which is essential for fluid-structure 
interaction problems in commercial nuclear power systems.  Some 
example problems were solved to demonstrate the developed technique. 
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