
Transactions of the Korean Nuclear Society Spring Meeting

Gyeongju, Korea, May 29-30, 2008

General Method of Using Bayesian Nets for a Software Reliability Assessment in Varying

SW Development Lifecycle

Heung-Seop Eom

 a∗
,
a
 Seung-Cheol Chang

a
Korea Atomic Energy Research Institute, ISA Div., P.O.Box 105, Yuseong Daejeon, ehs@kaeri.re.kr

*
Corresponding author: ehs@kaeri.re.kr

1. Introduction

Bayesian Net (BN) has been used in many researches to

predict software defects, because it allows all the

evidence to be taken into account [1,2]. However one of

the serious difficulties in the earlier works was that the

user had to build a different BN for each software

development lifecycle. This limits the practical use of

BN in the field. One way to solve this problem is the use

of general BN templates which are not restricted to a

particular software lifecycle. This paper describes a

method for this purpose on the strength of Object-

Oriented BN (OOBN) and Dynamic BN (DBN)

technique.

2. Building the BN Model in Varying Software

Development Lifecycle

The structure of a software lifecycle (SLC) basically

consists of requirement phase, design phase, coding

phase, and testing phase. Most SLCs which are

available for the development of safety-critical software

are a form of any number and combination of these 4

phases. Therefore the general BN model of a software

development lifecycle can be constructed by ① creation

of general phase-BN models and ② linking separate
phase-BN models into a model for an entire lifecycle.

2.1 Overview of BN Modeling

A Bayesian Net [3] is a graph together with an

associated set of probability tables. The BN graph

consists of nodes and arcs. The nodes represent

uncertain variables and the arcs represent the causal

relationships between the variables. The BN has been

known as one of promising technique which can predict

the reliability of safety-critical software.

The creation of a large and repetitive BN is

straightforward but very time consuming and laborious

work. Object-Oriented BN (OOBN) [4] simplifies this

work by creating predefined subnets which is called a

‘Class’ in Object-Oriented methodology terms. The BN

of a SLC can be created by linking these phase subnets.

There are general classes which are common in each

development phase, so we can convert these classes into

general BN subnets. The SLC is a set of phases and it

defines the overall project. This can be expressed by

using a dynamic BN (DBN) [5]. Figure 1 shows the BN

modeling schema by using OOBN and DBN.

Fig. 1. Schema of BN modeling by using OOBN and DBN

2.2 Phase BN Model

A phase BN is a BN subnet which models a single

software development phase. The phase BN consists of

five classes.

� New defects introduced: This class models the

quantity of the introduced defects during the works of

the current phase.

� Residual defects from previous works: This class

indicates the number of defects in the product from the

previous phase.

� Defects found & fixed: This class models the

number of defects which were found and fixed during

the current phase.

� Residual defects post: This class models the number

of defects that exist in the final product of the current

phase.

� Phase frame: This class is a frame which deals with

changes of defect’s quantity in the current phase.

Figure 2 is an example of the class (BN subnet)

‘Defects found & fixed.’

Fig. 2. BN subnet for the class “Defects found & fixed”

All the activities of the software development phases

are concerned with the fault avoidance, fault detection

& fix, and fault tolerance. This concept is reflected in

907

Transactions of the Korean Nuclear Society Spring Meeting

Gyeongju, Korea, May 29-30, 2008

the phase BN, and Figure 3 shows a generalized phase

BN subnet.

Fig. 3. Generalized phase-BN subnet

The classes in a phase BN can be applied

(instantiated) to each development phase of a SLC as

table 1.

Table 1: An example of instantiation of activity

classes to each development phase

 BN nodes

Dev. Phase

New defects

introduced

Residual defects from

previous works

Requirement

Phase

Defects introduced in

requirement

specification

Defects exist is system

design specification

Design Phase
Defects introduced in

design specification

Defects exist in

requirement

specification

Coding Phase
Defects introduced in

coding works

Defects exist in design

specifications

Testing Phase
Defects introduced in

testing works
Defects exist in code

 BN nodes

Dev. Phase
Defects found & fixed Residual defects post

Requirement

Phase

V&V/ Review &

Audit activities in

requirement phase

Defects exist in

requirement

specification

Design Phase

V&V/ Review &

Audit activities in

design phase

Defects exist in design

specification

Coding Phase

V&V/ Review &

Audit activities in

coding phase
Defects exist in codes

Testing Phase

V&V/ Review &

Audit activities in

testing phase

Defects exist in

executable binary code

2.3 Life-Cycle BN Model

Two SLCs are modeled by linking a series of phase

BNs and their classes. Figure 4 is the BN model of a

spiral software lifecycle. The example in Figure 5 is the

BN model of a waterfall lifecycle. Each phase BN in a

SLC model is connected by a time-indexed variable.

With the help of DBN we can link one of the parents of

a time-indexed variable to a variable from the previous

time frame.

Fig. 4. BN graph for Waterfall lifecycle model

Fig. 5. BN graph for Spiral lifecycle model

3. Summary and Future Works

Object-Oriented BN simplifies laborious and

repetitive works in constructing a large BN, and

Dynamic BN enables a BN modeling of various SLCB

by combining all the development phases. The proposed

method will be applied to the modeling of reliability

assessment of the safety-critical software which will be

embedded in a reactor protection system developed by

the KNICS project.

Acknowledgement

This research was supported by “The Mid and Long

Term Nuclear R&D Program” of Ministry of Science

and Technology, Korea.

REFERENCES

[1] H. S. Eom, BBN based Quantitative Assessment of

Software Design Specification, KNS 2007 Spring, 2007.

[2] N. E. Fenton, Software Measurement: Uncertainty and

Causal Modeling, IEEE Software 10(4), 116-122, 2002

[3] F. V. Jenson, Introduction to Bayesian Networks, UCL

Press, 1996

[4] D, Koller, A. Pfeffer, Object-Oriented Bayesian Networks,

Proceedings of the 13th Conference on Uncertainty in AI,

Providence, Rhode Island, USA, 1997

[5] O. Bangs, Top-down construction and repetitive structures

representation in Bayesian networks, In Proceedings of the

13th International Florida AI Research Symposium

Conference, Florida, USA, 2000.

908

	분과별 논제 및 발표자

