Development of a Supercritical CO₂ Brayton Energy Conversion System for KALIMER

J.E. Cha^{a*}, T.H. Lee^a, S.O. Kim^a, D.E. Kim^b, M.H. Kim^b

^aKAERI, 150, DukJin-Dong, Yuseong-Gu, Daejeon, 305-353, Korea, jecha@kaeri.re.kr ^bPOSTECH, San 31, Hyoja-dong, Nam-gu, Pohang, 790-784, Korea

*Corresponding author: jecha@kaeri.re.kr

1. Introduction

Recently, research on a power conversion cycle for a next generation reactor has been conducted and the Supercritical CO₂ Brayton cycle is presented as a promising alternative to the present Rankine cycle. The principal advantage of the S-CO₂ gas is a lower compression work compared to an ideal gas such as helium. As a result, a good efficiency at a modest temperature, a simplified compressor design and a compact size of the heat exchangers and turbines might be achieved. The S-CO₂ Brayton cycle coupled to a SFR also excludes the possibilities of a SWR (Sodium-Water Reaction) which is the major safety-related event, so that the safety of a SFR can be improved. This paper contains a description of the S-CO₂ Brayton cycle coupled to KALIMER-600.

2. Design of S-CO₂ Brayton Cycle and Components

2.1 S-CO₂ Brayton cycle for KALIMER-600

For the development of the S-CO₂ Brayton cycle coupled to KALIMER-600, a thermal balance was established for 100% power operating conditions where all the reactor system models were included such as a primary heat transport system (PHTS), an intermediate heat transport system (IHTS), and an energy conversion system.

Figure 1. S-CO₂ Brayton cycle for KALIMER-600

The S-CO₂ Brayton cycle adopts two recuperators to increase its cycle efficiency and two compressors were adopted to avoid a sharp change of the physical properties near its critical point with a pressure. A thermal balance was calculated by an application of the cycle analysis code developed by KAERI (Figure 1).

Considering the cycle efficiency and heat transfer area in the PCHE, the flow-split ratio is a major parameter for the system's efficiency and the LTR heat transfer area. From the investigation of the system efficiency and LTR area, the system efficiency reaches a maximum value at 69% of a split flow. However at this condition the LTR size is too large to implement. As the split flow ratio increases to 71%, the system efficiency decrease by 0.3% and the LTR area is reduced to an order of $1/10^{\text{th}}$. Based on this investigation, the optimum value of the split was determined as 71%.

Figure 2. Flow-split ratio of a LTR downstream

2.2 Turbomachinery Design

For the S-CO₂ energy conversion cycle's efficiency, the efficiency of the turbine and compressor is an important parameter. Since there is no practical experience or design data for the S-CO₂ turbomachinery, it is necessary to establish the methodologies for the design and performance analysis before the detailed design and manufacturing stage. Thus, one-dimensional codes for the turbomachinery have been developed continuously to design and to analyze their performance. To complement the codes, a three-dimensional flow analysis was conducted with the help of a commercial CFD code. In the case of a compressor design, a one-dimensional design and analysis code was developed to determine the compressor configuration parameter near an operation point on the basis of the meanline analysis method and a loss model. Using this code, a preliminary performance analysis of the compressor was conducted for the Kalimer-600 S-CO₂ Brayton cycle. The characteristics of the off-design points (ODP) were also analyzed with the code (Figure 3, Figure 4).

In the case of a turbine design, a one dimensional design code was developed to analyze the performance parameters. A methodology was also developed by using the commercial CFD code for the analysis of thermal hydraulics of the turbine. A three dimensional configuration of the turbomachinery was also generated by ANSYS BladeGenTM on the basis of one-dimensional design properties. From the CFD analysis, the mass flow rate was obtained as 8800 kg/s at 85 % of the isentropic efficiency (Figure 5).

Figure 3. Performance of compressor #1 for the ODP

2.3 PCHE Design

The one-dimensional analysis code has been developed to evaluate the heat transfer performance and pressure drop characteristics of a Printed Circuit Heat Exchanger (PCHE). In order to assess the applicability of the developed model, the calculated results by the model were also compared with the existing experimental data.

As a first step to develop an improved design concept of the PCHE, a CFD analysis was performed to assess the applicability of the CFD method. New configuration PCHE model was developed by using a flow analysis with a commercial FLUENT code. New PCHE has an internal channel for an airfoil-fin configuration. It shows a very small pressure drop compared with a previous PCHE while maintaining the heat transfer rate (Figure 6).

Figure 5. Performance of turbine for the ODP

Figure 6. Performance of new configuration PCHE

3. Conclusions

A S-CO₂ Brayton cycle energy conversion system was constructed for KALIMER-600. Using the developed turbomachinery design codes, the off-design characteristics of the S-CO₂ turbomachinery were investigated. New configuration of PCHE, which shows a very small pressure drop compared with a previous PCHE while maintaining the heat transfer rate, was developed by using a flow analysis with a commercial FLUENT code.

ACKNOWLEDGMENTS

This study was performed under the Mid- and Longterm Nuclear R&D Program and INERI Program sponsored by the Ministry of Education, Science and Technology of the Korean Government.

REFERENCES

 V. Dostal, M. J. Driscoll, P. Hejzlar, N. E. Todreas, "A supercritical CO2 gas turbine power cycle for next-generation nuclear reactors," Proceedings of ICONE 10, Arlington, 2002
S.O. Kim, J.J. Sienicki, Supercritical Carbon Dioxide Brayton Cycle Energy Conversion, International Nuclear Energy Research Initiative (INERI) Technical Report, 2005