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1. Introduction 

 
The internal structures of pressurized water reactors 

(PWR) located close to the reactor core are used to 

support the fuel assemblies, to maintain the alignment 

between assemblies and the control bars and to canalize 

the primary water. In general these internal structures 

consist of baffle plates in solution annealed (SA) 304 

stainless steel and baffle bolts in cold worked (CW) 316 

stainless steel. These components undergo a large 

neutron flux at temperatures between 280 and 380
o
C. 

Well-controlled irradiation-assisted stress corrosion 

cracking (IASCC) data from properly irradiated, and 

properly characterized, materials are sorely lacking due 

to the experimental difficulties and financial limitations 

related to working with highly activated materials. 

In this work, we tried to apply the artificial neural 

network (ANN) approach, predicted the susceptibility to 

an IASCC for an austenitic stainless steel SA 304 and 

CW 316. G.S. Was and J.-P. Massoud  experimental 

data are used. Because there is fewer experimental data, 

we need to prediction for radiation damage under the 

internal structure of PWR. Besides, we compared 

experimental data with prediction data by the artificial 

neural network. 

 

2. Prediction Model and Results 

 

2.1 Artificial Neuron Network (ANN) 

 

The ANN performs fundamentally like a human brain. 

The cell body in the human neuron receives incoming 

impulses via dendrites (receiver) by means of chemical 

processes. If the number of incoming impulses exceeds 

a certain threshold value the neuron will discharge it off 

to other neurons through its synapses, which determines 

the impulse frequency to be fired off. 

Therefore, processing units or neurons of an ANN  
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Figure 1. Scheme of Multi-Layer Perceptron (MLP). 

 

 

consist of three main components; synaptic weights 

connecting the nodes, the summation function within the  

node and the transfer function. Synaptic weights 

characterise themselves with their strength (value) 

which corresponds to the importance of the information 

coming from each neuron. In other words, the 

information is encoded in these strength-weights.   

The summation function is used to calculate a total input 

signal by multiplying their synaptic weights and 

summing up all the products.  

 

2.2 Multi-Layer Perceptron Model 

 

The Multi-layer perceptron (MLP) is the most widely 

used type of neural network (Figure 1). Multi-layer 

perceptrons are feedforward neural networks trained 

with a standard backpropagation algorithm. They are 

supervised networks so they require a desired response 

to be trained. They learn how to transform input data 

into a desired response, so they are widely used for a 

pattern classification. With one or two hidden layers, 

they can approximate virtually any input-output map. 

They have been shown to approximate the performance 

of optimal statistical classifiers in difficult problems.  

 

2.3 Experimental Data and Prediction Method 

 

G.S. Was [1,2] and J.-P. Massoud [3] used austenitic 

stainless steel irradiated in the EBR-II, BOR-60 and 

OSIRIS reactors.  These steels were irradiated with 1 

MeV protons to doses between 1 ~ 40 dpa at 300 ~ 

400
o
C both with or without a 15 appm helium pre-

implanted at ~100
o
C.  

The artificial neural network code NeuroShell 

Predictor was used to analyse the data and two different 

training performances are investigated:  
 

• Input layers : temperature, dose. 

• Output layers : dislocation loop size, dislocation loop  

density. 

• Training strategy :  genetic (combines a genetic 

algorithm with statistical estimator) 
 

2.4 Prediction of Dislocation Loop size 

 

For the PWR internal structures constructed of 

solution annealed 304 plates and cold-worked bolts, it is 

therefore difficult to measured their dislocation loop 

characteristics at PWR relevant temperatures based only 

on a fast reactor experience. According to G.S. Was and 
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J.-P. Massoud experimental data, the data of dislocation 

loop characteristics is not existed at 360
o
C. So, we 

predicted the susceptibility to IASCC for an austenitic 

stainless steel at 360
o
C. 

Figure 2 shows that the comparison between the 

predicted and measured dislocation loop size for an 

austenitic stainless steel SA 304 and CW 316. The value 

for R-squared ranges from 0 to 1.  The closer the value 

is to 1, the better the net is able to make predictions. 

The net is not able to make good predictions if the value 

is near 0. The R-squared value of SA 304 was 0.852921, 

and in case of CW 316 was 0.674923. And the error 

bars of data were 15.2 and 16.8 percent. The reasons for 

irradiation damage generated from the point defects 

created during irradiation. However, the material of CW 

316 already has point defects before radiation. 

Therefore, R-squared values of CW 316 lower than SA 

304 by radiation damage. On the other hand, the error 

rate was higher. The results of the prediction are listed 

in Table 1.  

Figure 3 shows that the relative importance of the 

input variables as predicted by the neural network. In 

case of SA 304 material, the dose is significantly better 

than the temperature in the prediction of a dislocation 

loop size. However, the material of CW 316, which was 

predicted the temperature is important better than the 

dose in the neural network. 
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Figure 2. Comparison between the predicted and measured  

dislocation loop size at 360oC.  
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Figure 3. The relative importance of the inputs using the MLP 

model. 

 

 

 

 

 

 

 

 

 

 

 

Table 1. The prediction of the dislocation loop size and 

density for an austenitic stainless steel SA 304 and CW 316.  
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3. Conclusion 

 

The artificial neural network was used to analysis a 

radiation damage. Neural networks have the ability to 

learn patterns and trends in datasets with several 

variables and can effectively use an interpolation to 

make prediction for cases when there are no data. Base 

on experimental data of a radiation damage as G.S. Was 

and J.-P. Massoud, we tried to apply the artificial neural 

network (ANN) approach. The neural network used two 

input parameters: temperature, dose. Validation of the 

prediction gave a good agreement. 
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