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1. Introduction 
 

Most existing methods of nuclear design analysis for 

pebble bed reactors (PBRs) are based on old finite-

difference solvers or on statistical methods [1]. These 

methods require very long computer times. Therefore, 

there is strong desire of making available high fidelity 

coarse-mesh nodal computer codes. 

Recently, we extended the analytic function 

expansion nodal (AFEN) method developed quite 

extensively in Cartesian (x,y,z) geometry and in 

hexagonal-z geometry to the treatment of the full three-

dimensional  cylindrical (r,θ,z) geometry for pebble bed 

reactors(PBRs).[2] The AFEN methodology in this 

geometry as in hexagonal geometry is “robust”, due to 

the unique feature of the AFEN method that it does not 

use the transverse integration. 

This paper presents an acceleration scheme based on 

the coarse-group rebalance (CGR) concept and provides 

test results verifying the method and its implementation 

in the TOPS code.  Also, we implemented discontinuity 

factors in the TOPS code and tested on benchmark 

problems. The TOPS results are in excellent agreement 

with those of the VENTURE code, using significantly 

less computer time. 
 

 

2. Basic Theory and Method 
 

The AFEN formulation in the (r,θ,z) coordinates 

system starts from the following multi-group diffusion 

equations in a homogenized node: 
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All the notations are standard. The equations can be 

rewritten in cylindrical geometry as follows: 
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Since the general solution method is described in 

detail elsewhere [2], we focus on acceleration and 

discontinuity factors in this paper. 
The coarse group rebalance (CGR) acceleration 

method was developed and applied to the AFEN 
method in rectangular and hexagonal geometries [3]. To 
apply the CGR acceleration to cylindrical geometry, 
first the net current variables in node balance and 

coupling equations are reformulated in terms of partial 
currents : 
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where s is surface index. 
Then, node balance equation can be written after 

group summation as 
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Let us define a rebalance factor per node as follows : 
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where    , , ,  0,1,  0,1,  1,2,..., .d z r s u g Gθ= = = =  

The rebalance factors are depicted in Fig. 1. 
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Fig. 1 Rebalance factors 
 
Substituting  Eq. (6) in Eq. (5) leads to 
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where 

 

Transactions of the Korean Nuclear Society Autumn Meeting 
               PyeongChang, Korea, October 25-26, 2007

- 81 -



0 , , , ,

, , 0,1 0,1 1 1

,
G G

outgoingd

d s u g ag av g

d z r s u g g

S
R J

Vθ

φ
= = = = =

= + Σ∑ ∑ ∑∑ ∑       (8) 

0 ,

1

.
G

fg avg g

g

P ν φ
=

= Σ∑                                                  (9) 

 
Eq. (7) is the CGR acceleration equation with 

eigenvalue 
eff
k  and eigenvector f

r
 composed of 

rebalance factors. Once f
r
 is found, new nodal 

unknowns are obtained via Eq. (6).  
 

3. Numerical Results  

 
To verify the CGR acceleration, discontinuity factor 

and its implementation in the TOPS code, we solved 
two test problems. The PBMR-400 benchmark problem 
[4] is tested to examine the CGR acceleration effect.  
The result for CGR testing is shown in Table I. As 

additional results, Fig. 2 shows radial node-average flux 
distributions obtained by TOPS and compared with 
those of VENTURE. 
 
TABLE I. Results of the PBMR-400 benchmark 

problem (void problem)
 a
 

 keff diff. (pcm) CPU time
 d
 

VENTURE
b
 1.00461 reference 3030 (sec) 

TOPS
c
 1.00464 3 1856 (sec) 

TOPS
c 
 (CGR) 1.00464 3 134   (sec) 

a
 Dtop_void =  22.8055 cm, Dside_void=  0.268625 cm 
b
 r-z (580x2900) calculation ; Chebyshev and LSOR 

acceleration 
c
 r-θ-z (20x4x29) calculation  
d
 Intel Core 2 2.40 GHz, 3.37GB RAM 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2. Radial node-average flux distributions 

 
We note that the speedup due to CGR acceleration 

exceeds 13 relative to no acceleration. With regard to 
comparison with finite-difference methods, the 
computer time reduction of the TOPS nodal code in 
three-dimensional problems will be spectacular against 
the fine-mesh finite-difference calculations, if we note 
that the VENTURE run is a two-dimensional calculation 
in Table I.  
To test performance of the TOPS code for problems 

with discontinuity factors in the homogenized diffusion 
parameters, we consider a variant of the PBMR-400 
benchmark problem, in which non-unity discontinuity 
factors are assumed given around the top void region as 

in Fig. 3. The results of with and without CGR 
acceleration in TOPS using AFEN-consistent void 
treatment are shown in Table II. The speedup is 10. 
 

 
Fig 3. Discontinuity factors assumed around the top 

void region 
 
TABLE II. Results of the PBMR-400 benchmark 

problem with discontinuity factors 

 keff #of terations CPU time
b
  

TOPS
a
 1.00514 842 1652 (sec) 

TOPS
a 
(CGR) 1.00514 75 163 (sec) 

a
 r-z (580x2900) calculation ; Chebyshev and LSOR 

acceleration 
b
 Intel Core 2 2.40 GHz, 3.37GB RAM 

 

4. Conclusions 

 

The results show that the CGR acceleration and 

discontinuity factors implemented in the TOPS code  

work correctly. The TOPS results are in excellent 

agreement with those of the VENTURE code, using 

significantly less computer time. 

 

Acknowledgment 
 
This work was supported in part by the Ministry of 

Science and Technology of Korea through the Nuclear 
Hydrogen Development and Demonstration (NHDD) 
Program coordinated by Korea Atomic Energy Research 
Institute. 

 
References 

 
 [1] E. Teuchert, et al., V.S.O.P Computer Code 

System for Reactor Physics and Fuel Cycle Simulation, 
Germany Juelich; Juel-2897 (1994). 
 
[2] N. Z. Cho, et al, “The AFEN Method in 

Cylindrical (r,θ,z) Geometry for Pebble Bed Reactors – 
Extension to Multigroup Form and Treatment of Voids 
–,” Trans. Am. Nucl. Soc., 94, 553 (2007). 
 
[3] N. Z. Cho, and J. Lee, “Analytic Function 

Expansion Nodal (AFEN) Method in Hexagonal-Z 
Three-Dimensional Geometry for Neutron Diffusion 
Calculation,” Journal of Nuclear Science and 
Technology, , 43, 1320 (2006).. 
 
[4] F. Reitsma, et al, “PBMR Coupled 

Neutronics/Thermal Hydraulics Transient Benchmark 
The PBMR-400 Core Design – Benchmark Definition,” 
NEA/NSC/DOC(2005)xxx Draft-V03, Nuclear Energy 
Agency, Organization for Economic/Cooperation and 
Development, September 1, 2005. 

Transactions of the Korean Nuclear Society Autumn Meeting 
               PyeongChang, Korea, October 25-26, 2007

- 82 -


	분과별 논제 및 발표자




