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1. Introduction 

 

An appropriate selection of preconditioner for Krylov 

subspace method improves convergence of the iterative 

solutions of transport equations. The recent work, e.g. 

[1,2], indicate that the consistent discretization 

requirement can be relaxed in diffusion synthetic 

acceleration (DSA) if it is used as a preconditioner for 

the Krylov iterative method. 

Coarse mesh rebalance (CMR) acceleration method 

also has been tested as a preconditioner for Krylov 

method. [3] It is known that the CMR method is 

unstable or ineffective with scattering ratio c close to 

unity for optically thin or thick cells. In 1-D problems, 

this deficiency, however, disappeared and even 

improved when the CMR is used as a preconditioner. 

But in 2-D problems, CMR preconditioner sometimes 

had worsening effect on Krylov method. In other words, 

the Krylov method without preconditoiner preformed 

better than the preconditioned Krylov method. 

This paper, as an extension of previous work for 

finding good preconditioners for Krylov method, tested 

several preconditioners such as coarse mesh finite 

difference (CMFD), partial current coarse mesh finite 

difference (p-CMFD), and Jacobi preconditioners. The 

results are presented with discussions. 

 

2. Methods and Results 

 

2.1. Linearized Form of Acceleration Methods 

 

In usual iterative methods, scarlar flux is updated by 

the following equation: 
1/2l lT bφ φφ φφ φφ φ++++ = += += += + ,                           (1) 

where T  represents transport sweep process, φφφφ  is scalar 

flux, b  is a fixed source, l is iteration index. In 
acceleration methods of linear form, low order equation 

is solved additionally. The linear form of low order 

equation is 
1/2l lLf φ φφ φφ φφ φ++++= −= −= −= − ,                           (2) 

where L means the matrix of low order equation, f  is 

updating factor of the linear acceleration method. 

Using this updating factor, scalar flux is updated by 
1 1/2l l fφ φφ φφ φφ φ+ ++ ++ ++ += += += += + .                           (3) 

Substitution of Eq. (1) into Eq. (2) results in 

( ) lLf T I bφφφφ= − += − += − += − +                           (4) 

and if  Eq.(4) is substituted into Eq.(3), Eq. (3) becomes 
1 1( ) [( ) ]l l lT b L T I bφ φ φφ φ φφ φ φφ φ φ+ −+ −+ −+ −= + + − += + + − += + + − += + + − + .             (5) 

After full convergence of the scalar flux, Eq. (1) and 

Eq.(5) become, respectively, 

( )I T bφφφφ− =− =− =− = ,                             (6) 

1 1( )( ) ( )I L I T I L bφφφφ− −− −− −− −+ − = ++ − = ++ − = ++ − = + .                 (7) 

Eq. (6) is a matrix equation we solve when there is no 

acceleration. When we apply an acceleration method, 

the matrix equation changes into Eq. (7). Comparing 

these two equations, it is obvious that 
1

I L
−−−−++++ works as a 

preconditioner. Instead of the traditional source iteration 

and acceleration framework, the Krylov iteration 

method can be applied to Eq. (6) or Eq. (7). A special 

feature of the Krylov method is that T  and L need not 
be defined explicitly with matrix elements and suffice to 

have only their “actions”. 

 

2.2. Numerical Tests 

 

Using several sample problems, numerical tests of 

preconditioned Krylov method have been done. For 

comparisons with well known acceleration methods, test 

problems chosen are the same with those Ref. 4. 

 

2.2.1. Test Problem I 

The first test problem is heterogeneous and based on 

a modified Kavenoky’s problem with vacuum 

boundaries as shown in Fig. 1. Material properties are 

given in Table I.  

 

Fig. 1. Geometry of Test Problem I 

Table I. Material Properties of Test Problem I 

 Moderator Fuel BP 

Source 

density 

( 3 1
cm sec

− −− −− −− − ) 

1.000 0.000 0.000 

1( )cmσσσσ −−−−  1.250 0.625 14.000 

1( )
s
cmσσσσ −−−−  1.242 0.355 0.000 
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The problem has 7×7 coarse-mesh cells and a coarse-

mesh cell contains 24 fine-mesh cells. The size of a 

coarse-mesh cell is 1.25cm×1.25cm and radii of circles 

are 0.45cm and 0.35cm. (8,4) angles and 50 rays per 

coarse-mesh cell per direction are used to solve the 

problem. Convergence criteria are 10
-6
. Table II shows 

the results of the calculation. 

Table II. Results of Test Problem I 

 Number 

of 

iterations 

Computing time (sec)
a
 

CRX (No Acc.) 58 25.93 

CMADR 7 5.12 

Krylov 9 8.47 

CMFD_Krylov 10 9.37 

pCMFD_KRylov 8 8.27 

CMR_Krylov 9 8.29 

Jacobi_Krylov 9 9.35 
a
 on Intel Xeon 3.0GHz Linux Machine 

 

2.2.2. Test Problem II 

In Test Problem II, we consider various material 

heterogeneities. The problem geometry of Test Problem 

II is identical with that of Test Problem I, but the 

material properties are heterogeneous with varying 

degrees (as shown in Table III as Cases 1,2, and 3). The 

scattering ratio is very high in all cases. Table IV shows 

the results. 

Table III. Material Properties of Test Problem II 

  Moderator Fuel BP 

Source 

density 

( 3 1
cm sec

− −− −− −− − ) 

 

1.000 0.000 0.000 

Case 1 1.250 0.625 14.000 

Case 2 1.250 0.625 140.000 
1( )cmσσσσ −−−−  

Case 3 1.250 0.00625 140.000 

( / )
s

c σ σσ σσ σσ σ====   0.999 0.999 0.999 

 

3. Conclusions 

 

In this paper, various preconditioners have been 

tested for Krylov iterative method and compared with 

source iteration (no acceleration) and CMADR 

acceleration. Preliminary conclusions based on tests 

performed so far are as follows. When the problem is 

not highly heterogeneous, optically thick, or thin, the 

preconditioned Krylov method showed almost similar 

performance (in the aspect of both number of iterations 

and computing time). However, if the problem is 

heterogeneous, pure Krylov method was better than 

preconditioned ones (Test Problem II, Case 1,2,3). This 

means that the preconditioners tested in this kind of 

problems does not improve but deteriorate the pure 

Krylov method. 

Table IV. Results of Test Problem II 

  Number of 

iterations 

Computing 

time (sec)
a
 

CRX (No Acc.) 288 114.87 

CMADR 10 13.61 

Krylov 19 17.04 

CMFD_Krylov 19 17.12 

pCMFD_Kryov 18 17.96 

CMR_Krylov 35 31.14 

Case 1 

Jacobi_Krylov 19 18.41 

CRX (No Acc.) 2155 859.21 

CMADR 10 45.16 

Krylov 31 27.48 

CMFD_Krylov 51 48.08 

pCMFD_Kryov 60 58.65 

CMR_Krylov 190 166.83 

Case 2 

Jacobi_Krylov 37 35.04 

CRX (No Acc.) 2155 883.45 

CMADR 10 40.50 

Krylov 34 30.96 

CMFD_Krylov 43 39.24 

pCMFD_Kryov 37 37.31 

CMR_Krylov 178 165.55 

Case 3 

Jacobi_Krylov 41 39.83 
a
 on Intel Xeon 3.0GHz Linux Machine 
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