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As a means of efficient multigroup nodal calculation, 

a one-node multigroup Semi-Analytic Nodal Method 
(SANM) kernel based two-group CMFD formulation 
had been developed.[1] In the SANM formulation of that 
work, a quartic Legendre expansion of the source was 
used unlike others[2,3] employing a quadratic form. 
Since the one-node nodal kernel provides the node-wise 
multi-group neutron spectrum as well as the multigroup 
interface currents, a two-group CMFD formulation, 
which uses dynamically condensed cross sections and 
nodal coupling parameters, was possible for the 
acceleration of the multi-group nodal calculation. Some 
drawbacks, however, were noted in using the one-node 
based method. One is the need for multiple one- node 
sweeps resulting from the slower convergence of the 
one-node formulation and the other is a stability 
problem for large optical length conditions [4].  
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iP  : i-th order Legendre Polynomial (i=0~4) 
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Since the number of unknown coefficients is 6G for 
each node, 12G unknown coefficients for the two node 
problem have to be determined. Among them even term 
coefficients; c2, c4, c6 for each node and group can be 
solved independently from the other node because 
group and node coupling between the coefficients can 
be removed by weighting the equation with P0, P2, P4. 
But the remaining 6G odd coefficients; c1, c3, c5 of 
both nodes are coupled by interface conditions: flux 
and current continuity at the surface between two nodes. 
It can’t be decoupled without several times of inversion 
of G x G full matrices. It is thus unavoidable to solve a 
6G linear system to obtain the coefficients which 
requires nontrivial computing time except for the 2 
group cases in which the inversion of a 2x2 matrix is 
trivial. This makes DSANM potentially slow as more 
groups are used. 

While the two-node nodal method doesn’t have such 
drawbacks, there are other issues in the implementation 
of the multi-group two-node nodal kernel. The first is 
that two-node kernel cannot update the neutron 
spectrum by itself so that a multigroup CMFD solver is 
needed. The other is that a more complicated nodal 
problem is to be solved for the direct coupled solution 
involving both nodes [2,3]. This work is to investigate an 
efficient two-node solution method employing the 
SANM with a quartic source expansion and the source 
iteration scheme.  

 

 
2. Two-Node Semi-Analytic Nodal Method 

 
In this section, the direct SANM that is to solve the 

group-coupled SANM equations directly is introduced 
first, and the iterative SANM is introduced as a more 
efficient way.  
 
2.1 Direct SANM (DSANM) 

2.2 Iterative SANM (ISANM) 
 
ISANM is to use a predetermined 4th order 

polynomial for the RHS source term whose coefficients 
are obtained from the previous solution using the least 
square method which is equivalent to the orthogonal 
expansion with the Legendre polynomial. Namely, the 
source is represented as the following: 

4

0

( ) ( ) ( ) ( )i i
i

S L q Pλψ ξ ξ ξ ξ
=

+ − =∑  (3) 

where  
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diffusion equation (given in a normalized form below): 
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 Since the RHS is a 4th order polynomial, we can 
obtain a particular solution of the 1-D diffusion 
equation using undetermined coefficients method. And 
the coefficient of cosh is obtained using average flux 
that is obtained by MG CMFD.  

 
with the right hand side source term expanded into a 2-
nd or 4-th order polynomial. Here a 4th order 
polynomials is used to express more accurately spatial 
distributions [1] as in Kim's work.[4] The solution then 
consists of sinh, cosh and a 4th order Legendre 
polynomial as: 
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The remaining coefficients of the sinh term of the two 
nodes are coupled each other and they can be obtained 
using the two interface conditions: flux and current 
continuity.  
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ISANM doesn’t need to any complex operation like 
6G matrix operation used in DSANM but needs group 
iterations to converge solutions due to approximation of 
RHS. Therefore, it’s important to decide whether a 
sufficient convergence is reached to get the solution 
efficiently. Here we use the relative l2-norm of a 
changed shape between current and previous fission 
sources to check convergence, namely, 
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2.3 Two-Level CMFD Acceleration 

 
The multi-group CMFD need to be performed when 

the two-node multigroup solver used. In that case, the 
2G CMFD can also be used to accelerate MG CMFD. 
A two level CMFD consisting of the M-G CMFD and 
the 2-G CMFD was thus implemented. In the two-level 
structure, the eigenvalue acceleration is mostly 
achieved by the Wielandt shift method. 

 
 

3. Result 
 

In order to compare the performance of the iterative 
and direct two-node SANM formulation, well known 2-
group benchmark problem, IAEA 3D, was first solved 
with the two methods. As shown in Table 1, ISANM 
and DSANM require the same numbers of nodal 
updates and CMFD sweeps. But DSANM gave better 
performance than ISANM because in the DSANM the   
3G x 3G linear system could be easily reduced with the 
inverses of 2x2 matrices instead of solving 3G x 3G 
linear system directly. This makes DSANM is better for 
the 2 group case. On the other hand, ISANM shows 
much better performance than DSANM in case of 7-
group problems as shown in Table 2. In this case, it is 
more efficient to solve 3Gx3G linear system than 
performing the reduction using the inverse of 7x7 
matrices. In the iterative solution, the shape 
convergence criterion of ISANM, Eq. (6), was set to 
0.01 and ISANM gives almost the same results as 
DSANM in terms of the number of nodal updates. 

In addition, we compared the performance and 
running time of two-node and one-node ISANM and 
the results are shown in Table 3. It indicates that two-
node ISANM gives better performance, more than 2 
times, than one-node ISANM. And the number of nodal 
updates does not increase much as the number of 
meshes per assembly grows up when using two-node 
ISANM, This result verifies two-node kernel 
guarantees the stability of convergence regardless of 
optical length. 

 
4. Conclusion 

 
We have implemented the two-node SANM in two 

ways: iterative and direct solution. For 2-group 

problems, DSANM shows better performance than 
ISANM but ISANM is better for multi-group problems. 
Thus it is better to use ISANM for multigroup problems. 
It was also verified that two-node SANM provides 
better convergence characteristics than the one-node 
formulation. 

 
Table 1. IAEA 3D,  2-Group Calculation Results 

 
Node1 Method2 NodalUpd.3 CMFDSwp.4 Time(sec)5 k-eff 

Iterative 7(16) 41 0.356 1.029151X1
Direct 7 41 0.281 1.02915

Iterative 7(15) 41 0.984 1.029092X2
Direct 7 41 0.891 1.02909

Iterative 8(16) 47 4.656 1.029074X4
Direct 8 47 3.891 1.02907

1 Node: the number of meshes per an assembly 
2 Method: Iterative-ISANM, Direct-DSANM 
3 NodalUpd. : # of nodal updates 
4 CMFDSwp.: # of CMFD Iterations 
5 Time : Intel XEON 2.0Ghz, 2GB Memory 
 

Table 2. MOX 2D, 7-Group  
 
Node1 Method2 NodalUpd.3 CMFDSwp.4 Time(sec)5 k-eff 

Iterative 9(20) 37(MG) 48(2G) 0.063 1.210641X1
Direct 9 37(MG) 48(2G) 0.212 1.21064

Iterative 7(15) 28(MG) 36(2G) 0.121 1.210432X2
Direct 7 27(MG) 36(2G) 0.375 1.21043

Iterative 6(12) 25(MG) 30(2G) 0.484 1.210384X4
Direct 7 27(MG) 36(2G) 1.211 1.21038

 
Table 3. one- and two-node SANM for MOX 2D, 7-Group. 

 
Node1 Method2 NodalUpd.3 CMFDSwp.4 Time(sec)5 k-eff 

1NSANM 9(74) 36(MG) 48(2G) 0.219 1.210641X1
2NSANM 9(20) 37(MG) 48(2G) 0.063 1.21064
1NSANM 6(27) 25(MG) 30(2G) 0.255 1.029092X2
2NSANM 7(15) 28(MG) 36(2G) 0.121 1.21043
1NSANM 5(26) 21(MG) 24(2G) 1.094 1.210384X4
2NSANM 6(12) 25(MG) 30(2G) 0.484 1.21038

2 Method: 1NSANM / 2NSANM - one-node / two-node 
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