⁶⁴Cu separation from ⁶⁷Ga waste product: co-production of ⁶⁴Cu and ⁶⁷Ga

K. S. Chun, J. H. Kim, H. Park, J. S. Lee

Department of Radiopharmaceutical, Korea Institute of Radiological and Medical Sciences(KIRAMS), 215-4 Gongreung-Dong, Nowon-Gu, Seoul, Korea, 139-706

kschun@kcch.re.kr

1. Introduction

⁶⁴Cu is one of the most useful and versatile radiocopper radionuclide in the nuclear medicine owing to its multiple decay scheme, which involve electron capture (41%), β⁻ (40%) and β⁺ (19%) decays, and has an intermediate half-life for radiopharmaceutical synthesis of many compounds[1]. These properties make its radiopharmaceuticals useful for PET imaging of tumors and targeted radiotherapy labeled on small compounds and monoclonal antibody[2][3].

Several production methods have been investigated for the ⁶⁴Cu radioisotope production, proton beam irradiation of an enriched ⁶⁴Ni target material using ⁶⁴Ni(p,n)⁶⁴Cu nuclear reaction and an enriched ⁶⁸Zn using 68 Zn(p, α n) 64 Cu, or deuteron irradiation of an 64 Ni using ${}^{64}Ni(d,2n){}^{64}Cu[3]$. However, each production method has some advantage and disadvantage, respectively. Among them, the highest production yields are obtained with the proton or deuteron beam irradiation on ⁶⁴Ni target. But, the reliable and effective recovery process for the recycling of enriched ⁶⁴Ni is absolutely necessary to establish because of the highly expensive cost of target material. Although the production yields of 68 Zn(p, α n) 64 Cu nuclear reaction, side-reaction during the proton beam irradiation on ⁶⁸Zn target for ⁶⁷Ga production, is lower than those of ⁶⁴Ni target, the former method is the most economical production procedure because of no extra irradiation and no ⁶⁴Ni recovery process necessary[4].

In this paper, we describe the effective separation of 64 Cu, produced by side nuclear reaction during proton irradiation of 68 Zn, from 67 Ga waste with dithizone extractant in CCl₄[5] and ion chromatography.

2. Methods and Results

2.1. Materials

All reagents used for production were of analytical grade. Enriched 68 Zn (isotopic purity > 98%) was obtained from Isoflex Russia. Diisopropyl ether, hydrochloric acid, carbon tetrachloride, dithizone and hydrogen peroxide were purchased from Aldrich.

Anion exchange resin AG1-x8 (100~200 mesh) was supplied by BioRad.

2.2. Preparation of extractant and anion exchange resin column

The extractant of 64 Cu from 67 Ga waste product was prepared as a 0.01% dithizone in CCl₄.

The anion exchange column (ϕ 1 x 7 cm) used for purification and concentration of ⁶⁴Cu solution obtained by dithizone extraction followed by back extraction with 7.2 N HCl was prepared by washing and preequilibrating with DM water and 7.2 M HCl.

2.3. Proton irradiation of 68 Zn target and recovery of 67 Ga waste

The ⁶⁷Ga was produced via the ⁶⁸Zn(p,2n)⁶⁷Ga reaction using a 200 μ A beam of 30 MeV proton for 7.5 hours. After irradiation, the ⁶⁷Ga was separated from the ⁶⁸Zn target using diisopropyl ether-7 M HCl solvent extraction system. ⁶⁸Zn and ⁶⁴Cu including ⁵⁷Ni, ⁵⁵Co impurities were collected in 7 M HCl aqueous phase of solvent extraction. For recovery of ⁶⁸Zn from aqueous phase with anion exchange resin, the normality of aqueous phase was adjusted to 2N with addition of DM water and then the solution was loaded on anion exchange column. The eluant from the column was collected for ⁶⁴Cu separation and ⁶⁸Zn eluated with DM water was kept for ⁶⁸Zn recycling.

2.4. Radionuclide analysis of 67 Ga waste and 64 Cu separation

The gamma-ray and radioactivity of radioisotopes in ⁶⁷Ga product waste were measured with HPGe(High Purity Germanium) detector coupled with MCA(ORTEC EG&G) (Fig.1. and Table 1.). The gamma-ray detection efficiencies of HPGe detector were determined by measuring the gamma-rays from 80keV up to 2MeV from NIST standard source. The gamma-rays of ⁶⁴Cu, ⁶⁷Cu, ⁵⁷Co, ⁵⁷Ni, ⁶⁷Ga and ⁶⁶Ga were confirmed in the ⁶⁷Ga product waste and the activities of ⁶⁴Cu and ⁶⁷Cu at EOB (End of 1,208mCi bombardment) were 6.05mCi, and respectively.

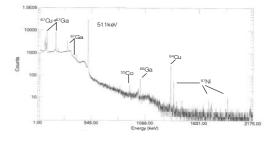


Fig.1. Gamma-ray spectrum of ⁶⁷Ga product waste. The spectrum was obtained by using HPGe detector coupled with MCA.

Table 1. Physical properties* and radioactivities of radioisotopes found in ⁶⁷Ga product waste.

rudioisotopes found in Gu producet music.			
RI	Half-	Activity	γ-ray(abundance %)
	life	(mCi at	
		EOB)	
⁶⁴ Cu	12.7h	1,208	511(34.8), 1345.8(0.47)
⁶⁷ Cu	61.8h	6	91.3(7),93.3(16),184.5(48)
⁶⁷ Ga	78.2h		93.3(39),184.5(21),300.0(16.6)
⁵⁷ Ni	35.6h	12	127.2(17),511(87), 377.6(81.7)
⁵⁵ Co	17.5h	180	477.2(20),931.1(75),408.5(17)
⁵⁷ Co	271d	< 0.1	122.1(85.6), 136.5(10.7)

* Data were taken from *National Nuclear Data Center*, *Chart of Nuclides*, http://www.nndc.bnl.gov.

The developed ⁶⁴Cu separation procedure from ⁶⁷Ga waste is summarized in a flow chart (Fig. 2.). The ⁶⁷Ga waste(vol.: about 350mL) obtained from ⁶⁸Zn recovery anion exchange column, installed in the ⁶⁷Ga processing hot-cell, was transferred into a 2L beaker and pH adjustment to 3 was performed with c-NaOH addition. In order to make the total volume to 1.4 L, DM water was added. For solvent extraction, a 140mL volume of 0.01% dithizone solution in CCl₄ was added to solution and thoroughly mixed for about 5 min. The mixture was transferred to separatory funnel and the organic phase containing ⁶⁴Cu and ⁶⁷Cu was collected in the beaker. The extraction efficiency of ⁶⁴Cu was quantitatively almost 100%. A few drops of 30% H₂O₂ solution were added to organic phase until color change from green to orange-red. ⁶⁴Cu was back-extracted with same volume of organic phase of 7.2N HCl. The back-extraction yield was about 90%, measured with the comparison of counts of ⁶⁴Cu gamma-ray of aqueous and organic phase. In order to reduce the volume of ⁶⁴Cu solution, anion exchange resin was applied. The aqueous phase obtained with back-extraction was loaded onto anion column (\$ 1 x 7 cm) and DM water was eluted to recover ⁶⁴Cu from column.

The total processing time and the separation yield of 64 Cu from 67 Ga product waste were about 2 hrs and more than 90%, respectively. The pure radio-copper 64 Cu/ 67 Cu solution was effectively separated and its radionuclidic purity was checked with HPGe-MCA system(Fig. 3.).

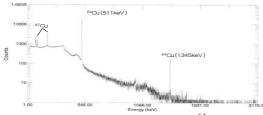


Fig. 3. Gamma-ray spectrum of final ⁶⁴Cu product.

3. Conclusion

The efficient chemical separation method using solvent extraction (0.01% dithizone in CCl_4 – HCl) followed by ion exchange chromatography was developed for ⁶⁴Cu separation from ⁶⁷Ga product waste.

The procedure was tested with one-fifth volume of ⁶⁷Ga product waste and the processing system for the large scale production is been constructing.

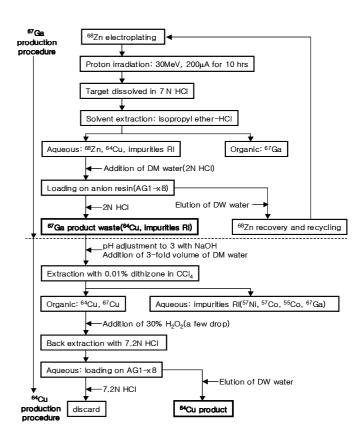


Fig.2. Flow chart of ⁶⁷Ga production and ⁶⁴Cu separation from ⁶⁷Ga waste.

REFERENCES

[1] P. J. Blower, J. S. Lewis, and J. Zweit, Copper Radionuclides and Radiopharmaceuticals in Nuclear Medicine, Nucl. Med. Bio. Vol. 23, p.957, 1996

[2] S.V. Smith, Molecular Imaging with Copper-64, J. Inorganic Biochemistry, vol. 98, p.1874, 2004

[3] W. Cai, K. Chen, L. He, Q. Cao, A. Koong, and X. Chen, Quantitative PET of EGFR Expression in Xenograft-bearing Mice Using ⁶⁴Cu-labeled Cetuximab, a Chimeric anti-EGFR Monoclonal Antibody, Eur J Nucl Med Mol Imaging vol.34, p.850, 2007

[4] S. V. Smith, D. J. Waters and N. D. Bartolo, Separation of ⁶⁴Cu from ⁶⁷Ga Waste Products Using Anion Exchange and Low Acid Aqueous/Organic Mixtures, Radiochimica Acta Vol. 75, p. 65, 1996

[5] A. K. Dasgupta, L. F. Mausner, and S. C. Srivastava, A New Separation Procedure for ⁶⁷Cu from Proton Irradiated Zn, App. Radiat. Isot. Vol. 42, No. 4, p. 371, 1991.