Development of a integration program for the dynamic analysis of a VHTR-SI process(I)

Jiwoon Chang, Jihwan Kim, Heesung Shin Youngjoon Shin, Cheung Youn*, Kiyoung Lee, Jonghwa Chang Korea Atomic Energy Research Institute150 Dukjin-dong, Yuseong-gu, Daejeon, Korea 305-600 *Chungnam National University, 220 Gung-dong, Yuseong-gu, Daejeon, Korea 305-764 E-mail;jwjang73@kaeri.re.kr, Tel; +82 42 868 8369, Fax; +82 42 868 8549

1. Introduction

The sulfur-iodine(SI) cycle and the Westinghouse hybrid sulfur cycle coupled to a very high temperature gas-cooled reactor(VHTR) are well known as a feasible technology to produce hydrogen.[1]

The concentration of the sulfuric acid solution and its decomposition are essential parts in both cycles.

In this study, we established a tentative process diagram based on the He-thermal pathway for an integration of a dynamic code for the VHRT-SI process. Also, we developed a dynamic program for the main equipment in that process.

2. Methods and Results

The target equipment for a dynamic analysis are a sulfuric acid distillation column, sulfuric evaporator and sulfur trioxide decomposer. The simulation code of each equipment was programmed based on a mathematical modeling for a dynamic calculation behavior.

Fig.1 shows the initial window including a diagram of the SI-process based on the He-thermal pathway. In figure 1, the He-stream is the gray line and the process gas line is the green line. Finally our conclusion on the He-thermal pathway will be established by discussing it with nuclear reactor system experts and an intermedium heat exchange loop expert in the future.

Fig. 1. Initial window including a diagram of the SIprocess based on the He-thermal pathway.

a. Sulfuric acid distillation

Figure 2 shows the modeling and signal flow for a distillation column.[2] In the figure 2, the model of a

distillation column is consisting of feed line, reboiler and n-th stage of plate.

Fig. 2. Modeling and signal flow for a distillation column.

Figure 3 shows a typical calculation result including the sulfuric acid distillation column system. In figure 3, the simulation results can be represented in table or figure forms. Fig. 4 shows a typical calculation result including the sulfuric acid distillation column system.

Fig. 3. Simulation results for a sulfuric acid distillation.

b. Sulfuric acid evaporation

We chose the short vertical tube evaporator for a calculation of the dynamic behavior. The modeling and flow sheet for a sulfuric acid evaporator has been shown in Figure 4.

Transactions of the Korean Nuclear Society Autumn Meeting PyeongChang, Korea, October 25-26, 2007

Fig. 4. Modeling and flow sheet for the dynamic simulation code of a sulfuric acid evaporator.

To simulate a sulfuric acid evaporator, we established an operation condition and an abnormal operation scenario. The context is the following;

- 1) Normal operation condition
- 200 MWth production scale
- Operation condition
- He flow rate : 10,250 mol/s

Sulfuric acid(98%) flow rate : 533 mol/s

- 2) Abnormal operation scenario
 - Influence evaluation for variation of a sulfuric acid input amount
 - Influence evaluation for variation of the helium temperature

Figure 5 shows the simulation results under the condition of an abnormal operation.

Fig. 5. Simulation results for a sulfuric acid evaporator.

c. Sulfuric trioxide decomposition

Figure 6 shows the typical simulation results for a sulfuric trioxide decomposer. The right graphs on the window are displaying the temperature profile and flow rate for the process gas and helium.

Fig. 6. Typical simulation results for a sulfuric trioxide decomposer.

3. Conclusion

The integration program for a dynamic simulation of the VHTR-SI process has been developed and its performance test has been successfully carried out.

Acknowledgments

This study has been done under the Nuclear Hydrogen Development and Demonstration project supported by the Ministry of Science and Technology, Republic of Korea.

REFERENCES

[1]Brown LC, Besenbruch GE, Lentsch RD, Schultz KR, Funk JF, Pickard PS, Marshall AC, Showalter SK. High efficiency generation of hydrogen using nuclear power. 2003; GA-A24285.

[2]Heesung Shin, Dynamic analysis for a sulfuric acid distillation of the SI-process, KAERI, 2006.