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1. Introduction 

 
CANDU (CANada Deuterium Uranium) reactors are 

a pressurized heavy water reactor that uses heavy water 

for moderator and coolant and uses natural uranium fuel 

with an on-power refueling scheme. Because of the on-

power refueling, fuel elements in CANDU reactors 

experience a linear power change during their residence 

in a fuel channel. The linear power change and the 

ramped power of the fuel element itself are essential to 

determining the fuel integrity parameters such as the 

stress corrosion cracking (SCC) failure probability. In 

this paper, a support vector regression (SVR) model 

optimized by a genetic algorithm is applied to 

estimating detailed fuel rod power distributions in 

CANDU reactor cores and is developed by referring to 

the previous work [1]. This method reconstructs rod-

wise power distributions of a CANDU fuel bundle 

based on full-core diffusion calculations performed on a 

coarse-mesh finite-difference scheme of the RFSP 

(Reactor Fueling Simulation Program) code system. The 

inputs for the SVR model are the assembly powers 

determined by the coarse-mesh full-core calculations 

and the form functions obtained from single-assembly 

lattice calculations. 

 

2. Support Vector Regression Model 

 

The SVR model is developed to predict the detailed 

fuel rod powers from the results of the full-core 

diffusion calculation performed on a coarse-mesh finite-

difference scheme. 

A. Support Vector Regression (SVR) 

 

The SVR model considers a regression function of the 

following form: 
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The parameters w  and b  are a support vector weight 

and a bias that are calculated by minimizing the 

following regularized risk function: 
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The constants λ  and ε  are user-specified parameters 

and ( , )iy f
ε

− x w  is called the ε -insensitive loss 

function [2]. 

B. Genetic Optimization of the SVR Model 

 

The genetic algorithm is used to optimize the 

insensitivity zone ε , the regularization parameter λ , 

and the sharpness σ  of the radial basis kernel function 

used in this paper that is expressed as follow: 
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The SVR model is trained using exemplary situations 

(training data) for which the desired output is already 

known. It is assumed that the model will also be able to 

predict the correct output for other examples, thus 

generalizing to situations not presented during training. 

The regularization is accomplished by making the SVR 

models have smaller support vector weights, which 

causes the SVR model to respond smoother and less 

likely to overfit. As shown in Eq. (1), it is possible to 

reduce the sensitivity of the estimated output according 

to the change of each input variable by decreasing the 

magnitude of the weight vector, which prevents an 

overfitting problem. Also, although the regularization 

was already considered by minimizing the risk function 

of (2), the regularization is additionally taken into 

account by minimizing the support vector weights 

during optimizing the design parameters of SVR models. 

Therefore, the following objective for optimizing the 

SVR models is suggested: 
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The SVR models is optimized through multiple 

objectives which minimize the root mean squared error 
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1E , the maximum error 
2

E , and the square of the 

magnitude of the weight vector 3E . 

 

3. Application Results 

 

The proposed SVR models were applied for 

reconstructing the rod-wise power distributions of 

CANDU fuel bundles from the coarse-mesh finite 

difference solutions obtained using the RFSP code. A 

total of 37 SVR models are used for power prediction of 

thirty seven fuel rods in fuel bundles. Each SVR model 

is trained using the assembly-average powers 

determined by core calculations using the HELIOS code 

and also, the form function obtained from single-

assembly lattice calculations using the HELIOS code. 

The SVR model has nine inputs, which are represented 

as follows: 

1 1 2 2 9 9
, , ,

p p p
x H x H x Hφ φ φ= = =L  

where φ  denotes the assembly-average power, pH  is a 

form function value at the corresponding rod location, 

each subscript denotes the location of the relevant 

assembly and those of assemblies surrounding it. 
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Fig. 1. Reconstruction RMS errors of fuel rod powers 

versus assembly position (test data). 

 

 

Figure 1 shows the reconstruction errors of fuel rod 

powers versus assembly position to examine the effect 

of the assembly position to the SVR model. The 

assembly position does not influence the performance of 

the SVR model. 

 

Figure 2 shows the reconstruction errors of fuel rod 

powers versus fuel rod position in a fuel assembly to 

investigate the effect of the fuel rod position to the SVR 

model. The fuel rod position number increases from the 

inner side (center) to the outer one. 
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Fig. 2. Reconstruction RMS errors of fuel rod powers 

versus 37-fuel rod positions in fuel assemblies (test 

data). 

 

In order to estimate the total reconstruction error 

including the errors due to the coarse-mesh finite-

difference diffusion calculation, the fuel rod powers 

were reconstructed using the assembly-average powers 

obtained from the DIF3D calculations. The RMS error 

averaged over 36 fuel assemblies is 1.10% for the 6× 6 

fuel bundle problem and 1.54% for the 3× 3 one. Also, 

the maximum rod power errors of 1332 (=36× 37 = no. 

of assemblies multiplied by no. of fuel rods per 

assembly) fuel rods is 3.20% for the 6× 6 fuel bundle 

problem and the maximum rod power errors of 333 

(=9× 37) fuel rods is 2.26% for the 3× 3 one. 

 

4. Conclusion 

 

In order to assess the performance of the 

reconstruction schemes, benchmark calculations have 

been performed for partial core representations of a 

natural uranium CANDU reactor. It was known from the 

benchmark calculations that the reconstruction schemes 

are quite accurate, yielding RMS rod power errors of 

less than 1.54%. The main contribution to the 

reconstruction error is made by the errors in the 

assembly-average powers obtained from the coarse-

mesh finite-difference diffusion calculation and the 

errors due to the reconstruction scheme itself are less 

than 0.14 %. In particular, since the rod power errors for 

the test data are similar to those for the training data, an 

SVR model trained for a specified data set can be 

successfully used for another data set. 
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