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1. Introduction 

 
A Binary Decision Diagram (BDD) is a graph based 

data structure and it has become a very popular method 

to calculate the exact top event probability (TEP) of a 

small or intermediate size reliability problem. In order 

to solve a large problem, this study presents an efficient 

method to maintain a BDD size within computational 

resources. The fast calculation was accomplished by 

making it possible to truncate BDDs when a Boolean 

operation between two BDDs is performed. 

 

1.1 BDD Algorithm 

  

A BDD [1-3] is a graph based data structure which 

allows efficient representation and manipulation of 

Boolean formulae, and it was proved that the BDD is 

effective in diverse fields of computer science and 

reliability [4]. Bryant [3] popularized the use of the 

BDD by developing a set of algorithms for the efficient 

construction and manipulation of BDDs. The BDD was 

applied to the reliability analysis [5,6] and has been 

investigated to solve large fault trees and importance 

measures [7-10].  

 

1.2 ZBDD Algorithm 

 

ZBDD (Zero-suppressed BDD) that encodes minimal 

cut sets (MCSs) is an important variation of the BDD 

[11]. By developing special formulae for the Boolean 

operations on two ZBDDs, it was shown that the 

operation could be performed with a truncation limit 

[12]. Due to the nature of the ZBDD, MCSs could be 

easily calculated with a given truncation limit. Both in 

computation time and memory usage, ZBDD algorithm 

is more efficient than MCS algorithms that are based on 

the classical Boolean algebra [12-14]. 

 

1.3 Variable Ordering of BDD Algorithm 

 

The BDD algorithm generates a BDD structure from 

a fault tree and calculates the exact TEP. It is well 

known that the BDD algorithm is highly memory 

consuming.  

 

In order to solve a large reliability problem within 

limited computational resources, lots of efforts have 

been done to minimize a BDD size. The size of a BDD 

structure (measured in the number of nodes) is 

drastically dependent on the choice of the variable 

ordering for the BDD construction. Finding the optimal 

variable ordering is an NP-hard problem. Bryant [3] has 

shown the importance of a good variable ordering may 

lead to a small size of a BDD structure. All known 

methods for finding a better variable ordering are based 

on static and dynamic variable ordering heuristics. 

Dynamic variable reordering heuristics that are based on 

a variable sifting are considered as a significant 

improvement of the BDD technology [15]. But 

unfortunately sifting is very time-consuming for large 

functions and the dynamic variable reordering method is 

still inefficient to solve large problems.  Please note that 

most heuristics are based on decision of trade-off 

between fast run-time and small BDDs. 

 

2. Methods and Results 

 

The method to truncate a BDD and its test results are 

explained in this section. 

 

2.1 BDD Algorithm 

 

The conventional Shannon decomposition is 

succinctly defined in terms of the ternary If-Then-Else 

(ITE) connectives as 
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where x and y are two variables with a variable ordering 

x < y. BDD starts from a single initial node, two 

children nodes are connected to the parent node with 

edges labeled 0 and 1, and the final nodes are always 

one of two leaf nodes labeled 0 or 1.  BDD operation is 

recursively performed on variable x that has a higher 

priority as 
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where <> is AND or OR Boolean operator.  

 

In order to save memory usage by maintaining a 

unique ite(x, F1, F0), {hash_key(x, F1, F0), F} is stored 

and retrieved to and from a ‘ITE hash table’. Here, 

hash_key(x, F1, F0) is a hash function that maps a triple 

into a node index.  

 

For suppressing the repetition of the same operation 

H=F<>G, the BDD operation results {hash_key(<>, F, 

G), H} are stored into an ‘operation hash table’. Please 

note that it was well known that the BDD truncation can 

not be used together with a hash table since it gives 

wrong answers. 
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2.2 BDD Algorithm with Truncation 

 

In this study, the method to incorporate the truncation 

limit into an ‘operation hash table’ was developed. 

Whenever a BDD operation is recursively performed on 

variable x, p(x) or 1.0- p(x) is multiplied to the upper 

probability p.  

 

(1) If the probability p is less than the truncation limit, 

the operation is stopped and returns 0.  

(2) Before the operation, if {hash_key(<>, F, G), H, 

q} is in the hash table and q > p, the operation 

returns H.  

(3) After the operation, H=F<>G is stored in the hash 

table. If {hash_key(<>, F, G), T, q} is in the hash 

table and q < p, T and q are replaced with H and p. 

Else, {hash_key(<>, F, G), H, p} is stored in the 

hash table. 

 
Table 1. Benchmark test A 

Fault tree = CEA9601

http://iml.univ-mrs.fr/~arauzy/aralia/benchmark.html

201 gates, 186 events, 26 negates, 4 complemented events

All event probabilities = 0.001

Without fault tree restructuring and modules

Truncation TEP
Run time

(seconds)

BDD node

number

1.00E-11 1.059240E-06 0.88 12,349

1.00E-12 1.092776E-06 1.47 19,090

1.00E-13 1.176633E-06 1.77 54,280

1.00E-14 1.180200E-06 3.11 154,728

1.00E-15 1.181040E-06 4.36 200,157

1.00E-16 1.182503E-06 4.67 320,805

1.00E-17 1.182611E-06 7.77 703,816

1.00E-18 1.182618E-06 9.94 811,113

Exact TEP 1.182622E-06 6.22 1,250,725  
 

Table 2. Benchmark test B 

Fault tree = HPSI3.FTP

571 gates, 421 events, 0 negates, 0 complemented events

With fault tree restructuring and modules

Truncation TEP
Run time

(seconds)

BDD node

number

1.00E-11 1.076139E-03 2.15 130,013

1.00E-12 1.076293E-03 3.78 274,187

1.00E-13 1.076325E-03 6.76 573,908

1.00E-14 1.076332E-03 12.60 1,131,067

1.00E-15 1.076334E-03 21.87 2,051,615

Exact TEP 1.076334E-03 21.31 2,497,172  
 

2.3 Test Results 

 

Two Benchmark problems were solved and their 

results are listed in Tables 1 and 2. The TEP rapidly 

converges to an exact value. Furthermore, this method is 

very fast and uses much less memory (nodes). 

 

 

3. Conclusion 

 

In order to solve a large reliability problem within 

limited computational resources, lots of efforts have 

been done to minimize a BDD size. The method is to 

find the optimal variable ordering by some heuristics. 

This paper explains another efficient method that 

provides an accurate TEP in a reasonably short time. It 

was accomplished by making it possible to truncate 

BDDs when a Boolean operation between two BDDs is 

performed. 
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