
How to incorporate a truncation limit into BDD

Woo Sik Jung, Sang Hoon Han, and Joon-Eon Yang

Korea Atomic Energy Research Institute, P.O. Box 105, Yuseong, Daejeon, 305-600, Korea

1. Introduction

A Binary Decision Diagram (BDD) is a graph based

data structure and it has become a very popular method

to calculate the exact top event probability (TEP) of a

small or intermediate size reliability problem. In order

to solve a large problem, this study presents an efficient

method to maintain a BDD size within computational

resources. The fast calculation was accomplished by

making it possible to truncate BDDs when a Boolean

operation between two BDDs is performed.

1.1 BDD Algorithm

A BDD [1-3] is a graph based data structure which

allows efficient representation and manipulation of

Boolean formulae, and it was proved that the BDD is

effective in diverse fields of computer science and

reliability [4]. Bryant [3] popularized the use of the

BDD by developing a set of algorithms for the efficient

construction and manipulation of BDDs. The BDD was

applied to the reliability analysis [5,6] and has been

investigated to solve large fault trees and importance

measures [7-10].

1.2 ZBDD Algorithm

ZBDD (Zero-suppressed BDD) that encodes minimal

cut sets (MCSs) is an important variation of the BDD

[11]. By developing special formulae for the Boolean

operations on two ZBDDs, it was shown that the

operation could be performed with a truncation limit

[12]. Due to the nature of the ZBDD, MCSs could be

easily calculated with a given truncation limit. Both in

computation time and memory usage, ZBDD algorithm

is more efficient than MCS algorithms that are based on

the classical Boolean algebra [12-14].

1.3 Variable Ordering of BDD Algorithm

The BDD algorithm generates a BDD structure from

a fault tree and calculates the exact TEP. It is well

known that the BDD algorithm is highly memory

consuming.

In order to solve a large reliability problem within

limited computational resources, lots of efforts have

been done to minimize a BDD size. The size of a BDD

structure (measured in the number of nodes) is

drastically dependent on the choice of the variable

ordering for the BDD construction. Finding the optimal

variable ordering is an NP-hard problem. Bryant [3] has

shown the importance of a good variable ordering may

lead to a small size of a BDD structure. All known

methods for finding a better variable ordering are based

on static and dynamic variable ordering heuristics.

Dynamic variable reordering heuristics that are based on

a variable sifting are considered as a significant

improvement of the BDD technology [15]. But

unfortunately sifting is very time-consuming for large

functions and the dynamic variable reordering method is

still inefficient to solve large problems. Please note that

most heuristics are based on decision of trade-off

between fast run-time and small BDDs.

2. Methods and Results

The method to truncate a BDD and its test results are

explained in this section.

2.1 BDD Algorithm

The conventional Shannon decomposition is

succinctly defined in terms of the ternary If-Then-Else

(ITE) connectives as

0101

0101

),,(

),,(

GyyGGGyiteG

FxxFFFxiteF

+==

+==
 (1)

where x and y are two variables with a variable ordering

x < y. BDD starts from a single initial node, two

children nodes are connected to the parent node with

edges labeled 0 and 1, and the final nodes are always

one of two leaf nodes labeled 0 or 1. BDD operation is

recursively performed on variable x that has a higher

priority as

<<><>

=<><>
=<>=

yxifGFGFxite

yxifGFGFxite
GFH

),,(

),,(

01

0011 (2)

where <> is AND or OR Boolean operator.

In order to save memory usage by maintaining a

unique ite(x, F1, F0), {hash_key(x, F1, F0), F} is stored

and retrieved to and from a ‘ITE hash table’. Here,

hash_key(x, F1, F0) is a hash function that maps a triple

into a node index.

For suppressing the repetition of the same operation

H=F<>G, the BDD operation results {hash_key(<>, F,

G), H} are stored into an ‘operation hash table’. Please

note that it was well known that the BDD truncation can

not be used together with a hash table since it gives

wrong answers.

Transactions of the Korean Nuclear Society Autumn Meeting
 PyeongChang, Korea, October 25-26, 2007

- 537 -

2.2 BDD Algorithm with Truncation

In this study, the method to incorporate the truncation

limit into an ‘operation hash table’ was developed.

Whenever a BDD operation is recursively performed on

variable x, p(x) or 1.0- p(x) is multiplied to the upper

probability p.

(1) If the probability p is less than the truncation limit,

the operation is stopped and returns 0.

(2) Before the operation, if {hash_key(<>, F, G), H,

q} is in the hash table and q > p, the operation

returns H.

(3) After the operation, H=F<>G is stored in the hash

table. If {hash_key(<>, F, G), T, q} is in the hash

table and q < p, T and q are replaced with H and p.

Else, {hash_key(<>, F, G), H, p} is stored in the

hash table.

Table 1. Benchmark test A

Fault tree = CEA9601

http://iml.univ-mrs.fr/~arauzy/aralia/benchmark.html

201 gates, 186 events, 26 negates, 4 complemented events

All event probabilities = 0.001

Without fault tree restructuring and modules

Truncation TEP
Run time

(seconds)

BDD node

number

1.00E-11 1.059240E-06 0.88 12,349

1.00E-12 1.092776E-06 1.47 19,090

1.00E-13 1.176633E-06 1.77 54,280

1.00E-14 1.180200E-06 3.11 154,728

1.00E-15 1.181040E-06 4.36 200,157

1.00E-16 1.182503E-06 4.67 320,805

1.00E-17 1.182611E-06 7.77 703,816

1.00E-18 1.182618E-06 9.94 811,113

Exact TEP 1.182622E-06 6.22 1,250,725

Table 2. Benchmark test B

Fault tree = HPSI3.FTP

571 gates, 421 events, 0 negates, 0 complemented events

With fault tree restructuring and modules

Truncation TEP
Run time

(seconds)

BDD node

number

1.00E-11 1.076139E-03 2.15 130,013

1.00E-12 1.076293E-03 3.78 274,187

1.00E-13 1.076325E-03 6.76 573,908

1.00E-14 1.076332E-03 12.60 1,131,067

1.00E-15 1.076334E-03 21.87 2,051,615

Exact TEP 1.076334E-03 21.31 2,497,172

2.3 Test Results

Two Benchmark problems were solved and their

results are listed in Tables 1 and 2. The TEP rapidly

converges to an exact value. Furthermore, this method is

very fast and uses much less memory (nodes).

3. Conclusion

In order to solve a large reliability problem within

limited computational resources, lots of efforts have

been done to minimize a BDD size. The method is to

find the optimal variable ordering by some heuristics.

This paper explains another efficient method that

provides an accurate TEP in a reasonably short time. It

was accomplished by making it possible to truncate

BDDs when a Boolean operation between two BDDs is

performed.

REFERENCES

[1] C.Y. Lee, “Representation of switching circuits by binary-

decision programs,” Bell System Technical Journal, 38, pp.

985-999, 1959.

[2] B. Akers, “Binary Decision Diagrams,” IEEE Transactions

on Computers, C-27(6), pp. 509-516, 1978.

[3] R. Bryant, “Graph Based Algorithms for Boolean

Function Manipulation,” IEEE Transactions on Computers,

C-35(8), pp. 677-691, August, 1986.

[4] R. Bryant, “Symbolic Boolean Manipulation with Ordered

Binary Decision Diagrams,” ACM Computing Surveys, 24,

pp. 293-318, September 1992.

[5] O. Coudert and J.C. Madre, “Implicit and Incremental

Computation of Primes and Essential Primes of Boolean

Functions,” Proceedings of the 29th ACM/IEEE Design

Automation Conference, DAC’92, June 1992.

[6] A. Rauzy, “New Algorithms for Fault Trees Analysis,”

Reliability Engineering and System Safety, 40, pp. 203-211,

1993.

[7] O. Coudert and J.C. Madre, “Fault Tree Analysis: 1020

Prime Implicants and Beyond,” Proceedings of the Annual

Reliability and Maintainability Symposium, Atlanta, NC,

USA, January 1993.

[8] A. Rauzy and Y. Dutuit, “Exact and Truncated

Computations of Prime Implicants of Coherent and Non-

coherent Fault Trees Within Aralia,” Reliability Engineering

and System Safety, 58, pp. 127-144, 1997.

[9] Y. Dutuit and A. Rauzy, “Efficient Algorithms to Assess

Component And Gate Importance in Fault Tree Analysis,”

Reliability Engineering & System Safety, Volume 72, pp.

213-222, May 2001.

[10] S. Epstein, A. Rauzy, "Can we trust PRA," Reliability

Engineering & System Safety, Volume 88, pp. 195-205, June

2005.

[11] S. Minato., “Zero-suppressed BDDs for set manipulation

in combinatorial problems,” Proc. of the 30th Int’l Conf. on

Design Automation, pp. 272-277, 1993.

[12] W.S. Jung, S.H. Han, J.J. Ha, "A Fast BDD Algorithm

for Large Coherent Fault Trees Analysis," Reliability

Engineering and System Safety, Vol. 83, pp. 369–374, 2004.

[13] W.S. Jung, S.H. Han, J.J. Ha, "Development of an

Efficient BDD Algorithm to Solve Large Fault Trees,"

Proceedings of the 7th International Conference on

Probabilistic Safety Assessment and Management, June,

Berlin, Germany, 2004.

[14] W.S. Jung, S.H. Han, J.J. Ha, "An Overview of the Fault

Tree Solver FTREX," 13th International Conference on

Nuclear Engineering, Beijing, China, May 16-20, 2005.

[15] R. Rudell, “Dynamic variable ordering for ordered binary

decision diagrams,” International Conference on Computer

Aided Design, pp. 42-47, November 1993.

Transactions of the Korean Nuclear Society Autumn Meeting
 PyeongChang, Korea, October 25-26, 2007

- 538 -

	분과별 논제 및 발표자

