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1. Introduction 

 
A long term project has been launched in October 

2006 to develop a plant safety analysis code. 5 

organizations are joining together for the harmonious co-

working to build up the code. In this project, KAERI takes 

the charge of the building up the physical models and 

correlations about the transport phenomena. The 

momentum and energy transfer terms as well as the mass 

are surveyed from the RELAP5/MOD3, RELAP5-3D, 

CATHARE, and TRAC-M does. Also the recent papers 

are surveyed. Among these resources, most of the 

CATHARE models are based on their own experiment 

and test results. Thus, the CATHARE models are only 

used as the comparison purposes.  

In this paper, a summary of the models and the 

correlations about the interfacial heat transfer are 

represented. These surveyed models and correlations will 

be tested numerically and one correlation is selected 

finally. 

2. Interfacial Heat Transfer 

 

The interfacial heat transfer is the phenomena that 

the mass and energy are transferred through the phase 

interface. The possible interface forms that may happen in 

the fluid flow are the continuous liquid-gas interface and 

the dispersed liquid-gas interface. For both of the 

interfaces, the temperatures of the liquid and gas phases 

determine the manners and the amounts of the transferring 

heat and phase change. Another important parameter to 

determine the interfacial heat transfer is the flow regime. 

The flow regimes directly determine the interface area. 

Thus, the surveyed model and correlations are arranged by 

the flow regimes. 

 

2.1 bubbly Flow 

 

In the bubbly flow regime, major interface is induced at 

the bubble and the continuous liquid. The bubble size or 

size distribution is key parameter to measure the 

interfacial area. In the RELAP5-3D codes, the mean 

diameter is used to describe the bubble size, which comes 

from the bubble size distribution functions[1]. The 

maximum bubble size is restricted by the Weber number. 

In addition, Ishii [2], Hibiki [3], Yun [4] models are 

surveyed, too.  

The heat transfer coefficients between the super heated 

liquid and the interface include the Plesset and Zwick 

model[5], Lee-Ryley model[6]. These models describe the 

combined effect of bubble growth rate and interfacial heat 

transfer. Lucic model [7] is a recent model. 

For the subcooled liquid, Unal model[8] is used in 

RELAP5-3D code. Chen and Mayinger [9] model is used 

in TRAC-M code. Recentrly, Chen and Mayinger[10], and 

Zeitoun[11], Warrier [12] suggested the correlation 

including the refrigerant fluids.  

For both of the superheated gas and subcooled gas, the 

interfacial heat transfer is provided as a constant. Only the 

amounts are different for all codes.  

 

2.2 Slug Flow 

 

The interfacial area of slug flow is considered by the 

sum of the large Taylor bubble interface and small bubble 

interface. For the Taylor bubble, Ishii and Mishima [13] 

correlation is widely used for all codes. The interfacial 

area model of bubbly flow is used for the small bubbles. 

RELAP5-3D code assumes the cylindrical Taylor bubbles 

and uses the Sauter mean diameter. TRAC-M includes the 

cap bubble shape. It is important to determine the fraction 

of the Taylor bubble because the Taylor bubble interfaces 

occupy the enormous portion of the total interfacial area.  

For the superheated liquid, RELAP5 uses large constant, 

3 x 10
6
 W/m

2
K for the heat transfer coefficient of large 

Taylor bubble interface. By using the large constant, the 

unstable superheated liquid phase rapidly disappears from 

the governing equation.  

For the subcooled liquid, the Chen and Mayinger model 

is used in TRAC-M code, the same to bubbly regime. 

Recent research about the subcooled liquid heat transfer, 

Hetzron and Rozenblit [14] and Elamvaluthi and Srinivas 

[15] suggested a correlation for the large Taylor bubble. 

For the superheated gas, modified Lee-Ryley model is 

used in RELAP5-3D. In TRAC-M code, a constant is used 

like the liquid interface case.  

The larger constant values are used for the heat transfer 

coefficient at the interface of subcooled gas bubbles than 

superheated gas.  

 

2.3 Annular-Mist Flow 

 

Annular-mist flow is characterized by the liquid film 

located along the wall and the droplets at the core region 

of the flow. All traditional codes use the total interfacial 

area rather than dividing the film and the droplet interface. 

However, when the droplet filed is considered another one 

independent phases, the interfacial area should be 

separated. RELAP5-3D, MARS, and TRAC-M postulate 

the simple geometrical assumptions by Ishii and 

Mishima[13] for the continuous liquid film interface. In 

addition, film wave effects are considered as a multiplying 

factor.  

The interfacial area between dispersed droplet and gas 

is determined by the number and the size of the droplets. 

In RELAP5, the entrainment fraction is calculated by the 

model of Ishii and Mishima [16]. From the dispersed 

liquid fraction, the interfacial area is calculated with the 

assumptions of droplet shape. RELAP5-3D and TRAC-M 

assume the spherical bubbles.  

For the superheated liquid film interface, RELAP5 

uses a constant 3x10
6
 W/m

2
K for the interfacial heat 
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transfer coefficient. The Brown model [17] is used for the 

droplet interface.  

In TRAC-M, the Bankoff model [18] is used for the 

superheated liquid film heat transfer coefficient. The 

Skelland model[19] is used for the droplet interface. 

RELAP5-3D uses the Theofanous correlation [20] for 

the subcooled liquid interface heat transfer coefficient. 

For the droplet interface, Brown model[17] is used again. 

In TRAC-M, the Bankoff model[18] and Pasamehmetoglu 

and Nelson  correlation[21] are used for the subcooled 

liquid film and the droplet interface, respectively. Both 

correlations are induced from the transient conduction 

heat transfer solutions.  

For the superheated gas interface, the Dittus-Boelter 

correlation is widely used for the turbulent and larminar 

cases. The Ryskin model [22] is used for the droplet 

interface in TRAC-M code.  

Both the RELAP5-3D and the TRAC-M use the very 

large constants for the heat transfer coefficient of the 

subcooled gas interface. Because it is an unstable phase, 

strong prevention logic is applied.  

 

2.4 Stratified Flow 

 

For the stratified flow regime, the Dittus-Boelter 

equation and McAdams model [23] are applied for almost 

all phasic temperature ranges in codes. However, in the 

subcooled liquid stratified interface, recent researches like 

Lee, et. al.[24], Kim, et. al.[25], are suggested for the 

effects of the reverse flow and surface wave, respectively. 

 

3. Conclusion 

 

   A literature survey work about the interfacial heat 

transfer has been performed for the wide range of the 

traditional thermal hydraulic codes and recent papers. 

Numerical tests and smoothing works will be prepared for 

the several selected models for the next work step. Finally, 

a well adjusted interfacial heat transfer package, which 

works as the source terms in the governing equations 

describing the 3-field, 2-phase fluid system. 
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