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1. Introduction 

 
Neutron diffusion equation solvers based on the finite 

difference method (FDM) have been widely used in the 

analysis of pebble bed reactors [1,2,3]. These FDM-

based solvers have a drawback of a long computation 

time and huge memory requirement, especially in three 

dimensional (3-D) applications. Recently, neutron 

diffusion equation solvers based on the nodal methods 

were developed for the analysis of pebble bed reactors 

to overcome these drawbacks [4,5,6]. 

In this paper, we present a neutron diffusion equation 

solver based on the finite element method (FEM). FEM 

has several advantages over the nodal methods. It has a 

flexibility in geometry, firm mathematical basis, and 

high computational efficiency. 

 

2. Methods and Results 

 

2.1. Implementation of the FEM Solver 

 

Triangular and rectangular finite elements were 

implemented for 2-D application. There are three types 

of triangular finite elements depending on the order of 

the shape functions. They are linear(3-node), quadratic 

(6-node), and cubic(10-node) triangular finite elements. 

Five types of rectangular finite elements were 

implemented. They are bi-linear (4-node), bi-quadratic 

(9-node), bi-cubic (16-node), incomplete-quadratic (8-

node), and incomplete-cubic (12-node) rectangular 

finite elements. 

Triangular prismatic and rectangular prismatic finite 

elements were implemented for 3-D application. There 

are ten types of triangular prismatic finite elements. 

Nine of them are the combinations of the three 

triangular finite elements and the three (linear, quadratic, 

and cubic) axial 1-D finite elements. The last one is the 

incomplete-quadratic (15-node) triangular prismatic 

finite elements. There are seventeen types of rectangular 

prismatic finite elements. Fifteen of them are the 

combinations of the five rectangular finite elements and 

the three axial 1-D finite elements. The last two of them 

are the incomplete-quadratic (20-node), and incomplete-

cubic (32-node) rectangular prismatic finite elements. 

Figure 1 shows some of the 3-D finite elements. 

A polynomial mapping from the master finite element 

to a real finite element was adopted for flexibility in 

dealing with complex geometry. Two types of mapping 

were implemented. They are linear mapping and iso-

parametric mapping. In linear mapping, only the vertex 

nodes are used as the mapping points. In iso-parametric 

mapping, all the nodal points in the finite element are 

used as the mapping points, which enables the real finite 

element with curved surfaces. 

 

 
Figure 1. Several types of 3-D finite elements. 

 

For the treatment of spatial dependency of cross-

sections in the finite elements, polynomial expansion of 

the cross-sections in the finite elements is allowed. 

There are three options for the expansion. They are 

constant, linear, and iso-parametric cross-section 

expansions. In the linear cross-section expansion, the 

cross-section values at the vertex nodes are used for the 

linear expansion of the cross-sections. In the iso-

parametric cross-section expansion, the cross-sections at 

all the nodes are used for the expansion of the cross-

sections. 

The power method with the Wielandt acceleration 

technique[7] was adopted as the outer iteration 

algorithm. The BiCGSTAB algorithm with the ILU 

(Incomplete LU) decomposition preconditioner[8] was 

used as the linear equation solver in the inner iteration. 

 

2.2 Verification of the Solver 

 

The FEM neutron diffusion equation solver 

developed in this study was verified against two well 

known benchmark problems. One is the IAEA PWR 

benchmark problem [9] and the other is OECD/NEA 

PBMR400 benchmark problem [10].  

Table 1 and Table 2 compare several FEM results for 

the IAEA 2-D and 3-D benchmark problem, 
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respectively. The solutions converge as the order of the 

element shape function increase and as the number of 

elements increase.  

Figure 2 shows the material map of the OECD/NEA 

PBMR400 benchmark problem in r-z plane. Though the 

problem is defined as a 2-D problem, 3-D finite 

elements were used to model this problem because it is 

defined on a cylindrical geometry. The triangular 

prismatic finite elements were used for the inner most 

column of the problem while rectangular prismatic finite 

elements were used for the other part of the problem. 

Table 3 compares the FEM and FDM solutions to the 

OECD/NEA PBMR400 benchmark problem. The first 

three solutions have similar accuracy – around 1 % of 

maximum power error and around 0.3% of RMS error. 

However, the computation time of the incomplete cubic 

finite element case is about 6 times and about 18 times 

shorter than those of the bi-linear finite element case 

and FDM case, respectively. Similar trend is observed 

with the last three cases. 

 

3. Conclusion 

 

In this paper, we developed a FEM based neutron 

diffusion equation solver and we compared the FEM 

and FDM solutions to benchmark problems. The results 

showed that the solutions converge as the order of the 

shape functions and as the number of finite elements 

increases. The results also showed that a higher order 

FEM is much more efficient than a low order FEM or a 

fine mesh FDM. 

 

Table 1. The FEM solutions to the IAEA 2-D problem 
Power Error  (%) Element      

Type 
Elements 

/ FA 
keff Error 
(pcm) Max. RMS 

2x2 +151 32.61 14.88 
bi-linear 

4x4 +27 8.29 3.78 

2x2 +14 4.26 1.77 incomplete 
quadratic 4x4 +1 0.47 0.20 

2x2 +4 1.77 0.54 incomplete 
cubic 4x4 0 0.14 0.04 

Ref. solution : incomplete cubic 8x8, keff =1.02958 

 

Table 2 The FEM solutions to the IAEA 3-D problem 
Element incomplete quadratic incomplete cubic 

Elmt./FA 2x2x19 4x4x38 6x6x57 2x2x19 4x4x38 

keff 1.02957 1.02940 1.02943 1.02939 1.02939 

 

Table 3. The FEM and the FDM solutions to the 

OECD/NEA PBMR400 benchmark problem 

Method 
keff Error 
(pcm) 

Max. Pow. 
Error (%) 

RMS Pow. 
Error (%) 

CPU Time 
(s) 

FEM 1x1 C1) -5 0.92  0.35  1.67 

FEM 6x6 L2) 9 1.03  0.27  9.97 

FDM 12x12 -7 0.99  0.30  30.3  

FEM 1x1 Q3) -4 4.09  1.08  0.58 

FEM 3x3 L2) 37 3.95  1.02  1.26 

FDM 5x5 -40 3.77  0.99  1.83 
Ref. Sol : FEM 15x15 r-z : incomplete cubic, θ : linear 
1) : r-z : incomplete cubic, θ : linear 
2) : r-z : bi-linear, θ : linear 
3) : r-z : incomplete quadratic, θ : linear 

 
0 10 41 73.6 80.55 92.05 100 117 134 151 168 185 193 204.5 211.4 225 243.6 260.6 275 287.5 292.5

-200 10 31 32.6 6.95 11.5 7.95 17 17 17 17 17 7.95 11.5 6.95 13.6 18.6 17 14.4 12.5 5

-150 50 133 133 133 133 155 116 113 113 113 113 113 135 164 144 144 152 152 152 189 190

-100 50 133 133 133 133 155 116 113 113 113 113 113 135 164 144 144 152 152 152 189 190

-50 50 133 133 133 133 155 116 112 112 112 112 112 135 164 144 144 152 152 152 189 190

0 50 133 133 133 133 155 116 111 111 111 111 111 135 165 144 144 152 152 152 189 190

50 50 134 134 134 125 156 117 1 23 45 67 89 136 166 145 145 153 153 153 189 190

100 50 134 134 134 125 156 117 2 24 46 68 90 136 167 145 145 153 153 153 189 190

150 50 134 134 134 126 157 118 3 25 47 69 91 137 168 146 146 153 153 153 189 190

200 50 134 134 134 126 157 118 4 26 48 70 92 137 169 146 146 153 153 153 189 190

250 50 134 134 134 126 157 118 5 27 49 71 93 137 170 146 146 153 153 153 189 190

300 50 134 134 134 127 158 119 6 28 50 72 94 138 171 147 147 153 153 153 189 190

350 50 134 134 134 127 158 119 7 29 51 73 95 138 172 147 147 153 153 153 189 190

400 50 134 134 134 127 158 119 8 30 52 74 96 138 173 147 147 153 153 153 189 190

450 50 134 134 134 127 158 119 9 31 53 75 97 138 174 147 147 153 153 153 189 190

500 50 134 134 134 128 159 120 10 32 54 76 98 139 175 148 148 153 153 153 189 190

550 50 134 134 134 128 159 120 11 33 55 77 99 139 176 148 148 153 153 153 189 190

600 50 134 134 134 128 159 120 12 34 56 78 100 139 177 148 148 153 153 153 189 190

650 50 134 134 134 128 159 120 13 35 57 79 101 139 178 148 148 153 153 153 189 190

700 50 134 134 134 129 160 121 14 36 58 80 102 140 179 149 149 153 153 153 189 190

750 50 134 134 134 129 160 121 15 37 59 81 103 140 180 149 149 153 153 153 189 190

800 50 134 134 134 129 160 121 16 38 60 82 104 140 181 149 149 153 153 153 189 190

850 50 134 134 134 129 160 121 17 39 61 83 105 140 182 149 149 153 153 153 189 190

900 50 134 134 134 130 161 122 18 40 62 84 106 141 183 150 150 153 153 153 189 190

950 50 134 134 134 130 161 122 19 41 63 85 107 141 184 150 150 153 153 153 189 190

1000 50 134 134 134 130 161 122 20 42 64 86 108 141 185 150 150 153 153 153 189 190

1050 50 134 134 134 131 162 123 21 43 65 87 109 142 186 151 151 153 153 153 189 190

1100 50 134 134 134 131 162 123 22 44 66 88 110 142 187 151 151 153 153 153 189 190

1150 50 132 132 132 132 163 124 114 114 114 114 114 143 188 151 151 154 154 154 189 190

1200 50 132 132 132 132 163 124 115 115 115 115 115 143 188 151 151 154 154 154 189 190

1250 50 132 132 132 132 163 124 115 115 115 115 115 143 188 151 151 154 154 154 189 190  
Figure 2. Material map of the OECD/NEA PBMR400 

benchmark problem 
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