

A A A A Study Study Study Study ofofofof Dependability Dependability Dependability Dependability Enhancement Enhancement Enhancement Enhancement for Safetyfor Safetyfor Safetyfor Safety----Critical Software in NPPCritical Software in NPPCritical Software in NPPCritical Software in NPP

Y. M. KIM and C. H. Jeong

Korea Institute of Nuclear Safety

Ymkim@kins.re.kr

1. Introduction

Recently, with the rapid development of digital

computer and information processing technologies,

nuclear I&C (Instrument & Control) system which

needs safety-critical function has adopted digital

technologies.

For software dependability of the safety-critical

system, we are using many software engineering

standards as well as software testing. The time needed

to obtain a statistically significant number of failures

makes software testing impractical. Also, when we use

software engineering standards, we focus primarily on

development processes. But the relationship between

meeting the standards and obtaining the high

dependability software is not well established.

In this paper, we approach fault-injection techniques

with safety analysis of safety-critical software in

Nuclear Power Plants. Fault-injection techniques can

help developers move beyond the practical limitations

of testing. Fault-injection techniques focus on software

behavior, not structure; process-oriented techniques

cannot measure behavior as precisely.

This paper is structured as follows. In Section 2, we

described dependability of the software, testing and

process-oriented assessment and fault-injection

techniques. In Section 3, we present our approach about

dependability enhancement using fault-injection

methods. Section 4 shows examples of the approach and

we conclude the paper in Section 4.

2. Related WorkRelated WorkRelated WorkRelated Work

2.1 Dependability of the Software

Dependability is defined as the trustworthiness of a

computer system such that reliance can justifiably be

placed on the service it delivers. Dependability may be

viewed according to different, but complementary,

properties, which enable the attributes of dependability

to be defined safety, security, and reliability.

Dependability is a qualitative system attribute that is

quantified through specific measures. Dependability is

often evaluated empirically through life testing.

However, the time needed to obtain a statistically

significant number of failures makes life testing

impractical for most fault-tolerant computers. Instead,

analytical modeling is typically used to predict

dependability [4].

2.2 Software Testing and Process-Oriented Assessment

Testing is the most popular methods of assessing

software quality which concentrate on product not

process before the current emphasis on process oriented

software engineering standards. The direct measurement

of software quality via testing is impractical. Normally,

we can use random testing to make statistically

reasonable predictions about future behavior of software.

But, the number of test required for getting high

reliability is impractical because the testing effort and

cost required to establish a high confidence about the

dependability are too high. Process oriented assessment

techniques are currently popular because of a reaction to

the intractability of adequate software testing [1].

2.3 Fault Injection Techniques

Fault-injection techniques are used on physical

systems to test their robustness. Fault-injection

technique is practical for measuring software quality.

Fault injection can be used to observe the behavior of

the error or failure associated with each type of fault

component. Fault injection is important to evaluating

the dependability of computer systems and can directly

evaluate dependability metrics. We can categorize

software injection methods on the basis of fault

injection time. The faults can be injected during

compile-time or during run-time [2].

2.3.1. Compile-time injection

This method injects fault/errors into the source code or

assembly code of the target program to emulate the

effect of software and transient faults. The source code

which is added faulty code alters the target program

images, causing erroneous behavior. But, the compile

time injection techniques can only be used when the

target system code is available, which is a major weak

point as the source code is not available for most COTS

components.

2.3.2. Run-time injection

During run-time, run-time injection methods are

commonly using triggering mechanisms such as time-

out, exception/trap, and code insertion. This method can

be used even when the source code is not available. But,

because the very low level fault injection is executed the

faults are injected, the relation between the caused

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 10-11, 2007

errors and the software faults defined at high levels is

not definite [5].

2.3.2. Consideration of fault-injection

Usually source codes of target systems are not

available. In [5], they compared the cost and accuracy

of compile-time software implemented fault-injection

techniques (CTSWIFI) and run-time software

implemented fault-injection techniques (RTSWIFI).

They show that CTSWIFI is up to 4 times more

expensive in terms of execution time while the accuracy

of them is almost same.

3. Enhancing Dependability by Fault-Injection

According to [3], the dependability estimated from

the critical set (critical and rarely executed code)

failures would thus be close to the actual dependability

(based on all failures). They said that critical operations

constitute only a small part of the operational profile

and failures of critical operations are the major threat to

system dependability. In that experiment, critical set

included redundancy management, exception handling,

initialization and calibration routines. Also, as suggested

in [8], fault injection could have played a major role in

avoiding hazard.

Figure 1. Overall approach

In our study, we use fault-injection method with

Software Preliminary Hazard Analysis (PHA) which is

executed in the early stage of the software life cycle.

Usually, PHA contains hazardous system states,

sequences of actions that can cause the system to enter a

hazardous state, sequence of actions intended to return

the system from a hazardous state to a nonhazardous

state, and actions intended to mitigate the consequences

of accidents [7].

We considered hazard lists of PHA as critical set. If

we concentrate our test effort to critical set using fault-

injection methods, we can enhance dependability of the

target software. Figure 1 shows the overall approach

about that. We can achieve dependability enhancement

through fault removal, also find more effective fault-

detection methods through information about fault

detection coverage of used fault-detection methods. For

each hazard list, we can examine that the fault coverage

of the selected fault detection methods through fault-

injection tests.

4. Examples of the Approach

In the PHA report of the Ulchin 5&6, they used fault

detection methods such as inter-channel comparison,

periodic test, trip indication, loss of heartbeat, trouble

alarm and range limit check [6]. Also, they used safety

hazard control verification methods such as code

inspection, S/W testing, document review and system

validation testing.

In case of Ulchin 5&6, we can find that the methods

for the hazard control are mainly software testing and

document review. Before, we showed about the limit of

the software testing and process oriented standards

which recommend V&V during software life cycle. We

can put fault-injection methods with the safety hazard

control verification methods. Fault-injection techniques

could be exploited for dealing limits of testing and

process oriented standards.

5. Summary

In this paper, we described an approach for

enhancing software dependability of digital I&C

systems using PHA and fault injection technique. Fault-

injection techniques with PHA could have played a

primary part in enhancing safety. Future work will be

made to show that the proposed method is a useful for

enhancing software dependability of the digital I&C

system through dependability modeling. And, we will

perform the case study for this research. We expect that

this approach might be applied to evaluation of safety-

critical software for new plants such as Shin-Kori 3 & 4

NPP and operating plants.

REFERENCES

[1] Jeffrey M. Voas and Keith W. Miller, Using Fault

Injection to Assess Software Engineering Standards, Software

Engineering Standard Symposium, 1995.

[2]Mei-Chen Hsueh, Timothy K. Tsai, and Ravishankar K.

Iyer, Fault Injection Techniques and Tools, IEEE Computer,

1997

[3]Dong Tang and Herbert Hecht, An Approach to Measuring

and Assessing Dependability for Critical Software Systems,

8th IEEE International Symposium on Software Reliability

Engineering, 1997.

[4]Jean Arlat, Martine Aguera, Fault Injection for

Dependability Validation: A Methodology and Dome

Applications, IEEE Transaction on Software Engineering,

1990

[5] Diamantino Costa and Tiago Rilho, ESFFI – A novel

technique for the emulation of software faults in COTS

components, IEEE, 2001

[6]Software Safety Plan for DPPS & DESPAS-AC for Ulchin

NPP U 5&6, rev 02.

[7] IEEE Standard for Software Safety Plans, 1994

[8]J. Voas, Software Fault Injection: Growing ‘Safer’ Systems,

Proceedings of the IEEE Aerospace Conference, 1997

PHA

Hazard List

Method of

Detection

Target S/W

Fault injection

Analysis

Fault data Fault removal

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 10-11, 2007

	분과별 논제 및 발표자

