### Assessment of Lattice Characteristics for ZED-II Using WIMS-CANDU

Won Young Kim, Byung Joo Min and Joo Hwan Park Korea Atomic Energy Research Institute, 150 Dukjin-Dong, Yousong-Gu, Daejourn, Korea

#### 1. Introduction

An investigation on the effect of the lattice characteristics to Zero Energy Deuterium (ZED)-II reactor in AECL has been performed. Since the neutronic behavior of the ZED-II lattice is similar to that of the CANDU reactor, the feasibility study is performed using ZED-II experimental data so as to use the analysis of the CANDU reactor safety analysis.

The assessment of the core physics characteristics of ZED-II reactor has been conducted using WIMS-CANDU code and WIMS-AECL code with ENDF/B-VI nuclear data libraries of 69- and 89- neutron energy groups, respectively. The compared parameters are the effective multiplication factors for the fresh and mid burn-up simulating natural uranium fuel (MOX) using the critical buckling derived from the experiments.

The calculation results show that there is a little larger over-prediction from the critical experiment in WIMS-CANDU calculation when compared to WIMS-AECL values.

#### 2. Experiments in ZED-II

The experiment in ZED-II was performed to validate the lattice code WIMS-AECL for the CANDU reactor physics analysis and to design the advanced CANDU reactor ACR. The experiment determines the material buckling and buckling-change-on-voiding of the UO<sub>2</sub> fuel with D<sub>2</sub>O unvoided and air voided as a coolant in the test channels. Also, the experiment was performed to study the effect of the channel temperature on the reactivity and D<sub>2</sub>O and CO<sub>2</sub> gas were used to heat the channel as a coolant. The reactor is made critical by pumping heavy-water moderator into the calandria and the power is controlled by adjusting the moderator level.

The ZED-II experiment used two kinds of fuels; natural uranium fresh fuel and MOX (mixed oxide) fuel calibrated to simulate the mid-burn up of the natural uranium fuel life in a CANDU reactor. The MOX fuel pellets contain the uranium depleted to 0.323wt% U<sup>235</sup> and 0.2wt% Pu<sup>239</sup> in heavy element. Also, a poison 0.013wt% Dy<sup>164</sup> was required to get a buckling similar to that of a mid burn-up fuel. The geometry of 37-element test fuel assembly of ZED-II is as shown in Figure 1.

The buckling was measured by the flux-map, the substitution and high temperature experiment;

- in the flux-map experiment, the buckling was derived by measuring the reactivity of Cu-wire in the

reference lattice and voided & flooded seven-rod substitution lattices

- in the substitution experiment, the buckling was derived by measuring the moderator critical height for the reference lattice followed by one-, three-, seven-rod substitution lattices

- in the high-temperature experiment, the buckling was derived by measuring the moderator critical height in the test channel including the heater, heater leads, heater shroud, thermocouples and support rods, using  $D_2O$  and  $CO_2$  gas coolant of temperature ranging from  $25^{\circ}C$  to  $300^{\circ}C$ .



Figure 1 Cross section of a test assembly (All dimensions in mm)

#### 3. Calculation method

In order to investigate the lattice characteristics for ZED-II reactor, the cell calculation was performed for 37-element ZED-II fuel using lattice codes such as WIMS-CANDU and WIMS-AECL and using the critical buckling derived from the experiment and compared with the experimental data. The nuclear data libraries in WIMS-CANDU and WIMS-AECL are adopted with the 69- and 89-energy groups of ENDF/B-VI, respectively.

The fuel assembly for a WIMS calculation was modeled as a square lattice including a fuel pellet, clad, coolant, pressure tube, air gap, calandria tube and a moderator. The transport calculation was performed by the collision probability option (PIJ) and B1 method was not used to calculate the effective cell flux using WIMS-AECL because the present WIMS-CANDU does not consider the end-region effect with the B1 method simultaneously. However the Benoist diffusion coefficient model was used to generate the cell average diffusion coefficients.

The comparisons for k-effective were performed with the modeling of a uniform lattice containing the fresh natural uranium fuel and MOX fuel by using the buckling derived from the experiment.

#### 4. Results and discussion

The following tables show the k-effective values calculated using WIMS-AECL and WIMS-CANDU provided with the 89- and 69-goups libraries respectively, based on the ENDF/B-VI nuclear data file. The buckling derived from the experiment was used as an input.

Table 1 show that WIMS-AECL and WIMS-CANDU over predicts the k-effective multiplication factors for the fresh fuel, by 1.84mk and 3.88mk in the cooled  $D_2O$  coolant and by 5.07mk and 7.31mk in the void coolant, respectively, using the critical buckling. For the MOX fuel WIMS-AECL and WIMS-CANDU over predicts the k-effective by 0.4mk and -3.8mk in the cooled  $D_2O$  coolant and by 1.4mk and -3.2mk in the void, respectively using the critical buckling.

Table 2 shows that WIMS-AECL and WIMS-CANDU over predicts the k-effective in the  $D_2O$  and  $CO_2$  gas coolant using the critical buckling, except the case of WIMS-CANDU for the water coolant of temperature from 25°C to 100°C.

# Table 1 Buckling and k-effective for FNU and MOXat room temperature

| Fuel<br>Type | Coolant | Buckling<br>(m <sup>-2</sup> ) | WIMS-<br>AECL | WIMS-<br>CANDU |
|--------------|---------|--------------------------------|---------------|----------------|
| FNU          | $D_2O$  | 3.572                          | 1.00184       | 1.00388        |
|              | air     | 3.884                          | 1.00507       | 1.00731        |
|              | change  | 0.312                          | 0.00323       | 0.00343        |
| MOX          | $D_2O$  | 0.520                          | 1.00037       | 0.99524        |
|              | air     | 1.178                          | 1.00139       | 0.99682        |
|              | change  | 0.658                          | 0.00102       | 0.00128        |

\* Data corresponds to a moderator purity of 99.569wt% D<sub>2</sub>O and a moderator temperature of 23.43°C.

## Table 2 Buckling and k-effective for in the heat experiment

| Channel<br>temp(°C) | Coolant<br>density<br>(g cm <sup>-3</sup> ) | Bucklin<br>g<br>(m <sup>-2</sup> ) | WIMS-<br>AECL<br>k-effective | WIMS-<br>CANDU<br>k-effective |
|---------------------|---------------------------------------------|------------------------------------|------------------------------|-------------------------------|
|---------------------|---------------------------------------------|------------------------------------|------------------------------|-------------------------------|

| D <sub>2</sub> O water coolant |        |       |         |         |  |  |  |
|--------------------------------|--------|-------|---------|---------|--|--|--|
| 25                             | 1.104  | 3.336 | 1.00667 | 0.99706 |  |  |  |
| 50                             | 1.095  | 3.301 | 1.00717 | 0.99750 |  |  |  |
| 100                            | 1.063  | 3.227 | 1.00855 | 0.99895 |  |  |  |
| 150                            | 1.016  | 3.162 | 1.00995 | 1.00045 |  |  |  |
| 200                            | 0.956  | 3.115 | 1.01115 | 1.00175 |  |  |  |
| 250                            | 0.881  | 3.079 | 1.01250 | 1.00312 |  |  |  |
| 300                            | 0.781  | 3.063 | 1.01387 | 1.00457 |  |  |  |
| Void coolant                   |        |       |         |         |  |  |  |
| 25                             | 0.0012 | 3.679 | 1.01165 | 1.00014 |  |  |  |
| 50                             | 0.0012 | 3.662 | 1.00940 | 1.00071 |  |  |  |
| 100                            | 0.0012 | 3.629 | 1.01052 | 1.00185 |  |  |  |
| 150                            | 0.0012 | 3.596 | 1.01165 | 1.00294 |  |  |  |
| 200                            | 0.0012 | 3.564 | 1.01274 | 1.00401 |  |  |  |
| 250                            | 0.0012 | 3.533 | 1.01380 | 1.00505 |  |  |  |
| 300                            | 0.0012 | 3.502 | 1.01487 | 1.00610 |  |  |  |

\* Data corresponds to a moderator purity of 99.710wt% D<sub>2</sub>O, a moderator temperature of 24.69°C and a coolant purity of 99.74wt% D<sub>2</sub>O.

#### Acknowledgement

The authors would like to express their appreciation to the Ministry of Science & Technology (MOST) of the Republic of Korea for support of their work through the mid- and long-term nuclear R&D Project.

#### References

[1] J. R. Askew, "The Calculation of Resonance Captures in a Few-group Approximation", United Kingdom Atomic Energy Authority, AEEW-R 489, 1966.

[2] J. R. Askew, F. J. Fayers and P. B. Kemshell, "A general description of the lattice code WIMS", J. of the Brit. Nucl. Energy Soc. 5, 4(1966).

[3] J. V. Donnelly, "Description of the Resonance Treatment in WIMS-AECL", Atomic Energy of Canada Limited Report, AECL-10550, 1993.

[4] J. V. Donnelly, "WIMS-CRNL: A User's Manual for the Chalk River Version of WIMS", Atomic Energy of Canada Limited Report, AECL-8955, 1986.

[5] R. J. J. Stamm'ler and M. J. Abbate, Methods of Steady-State Reactor Physics in Nuclear Design, Academic Press, London.

[6] G. I. Bell and S. Glasstone, Nuclear Reactor Theory, Van Nostrand Reinhold Company, New York, 1070.

[7] S. Q. Bogado Leite, "An assessment of WIMS Method for Computing Collision Probability in one-Dimensional Annular Systems", Progress in Nuclear Energy, Vol. 36, No. 4, pp. 367-378, 2000.

[8] R. J. J. Stamm'ler, J. Blomstrand and Z. J. Weiss, "Equivalence relations for resonance integral calculations", Journal of Nuclear Energy, Vol. 27, pp. 885-888, 1973.