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1. Introduction 

Traditionally, the calibration of nuclear instruments 

has been performed at each refueling cycle.  However, 

many nuclear plants have moved toward condition-

directed rather than time-directed calibration.  This 

condition-directed calibration is accomplished by on-

line monitoring. On-line monitoring employs an 

empirical predictive modeling technique to assess 

instrument channel performance. A critical issue 

surrounding the real application to the nuclear power 

plants is quantifying the uncertainty of the predictive 

model.  This study investigates the various uncertainty 

quantification techniques employed in OLM algorithm 

which is auto-associative kernel regression(AAKR). 

 

2.  AAKR Method  

Auto-Associative Kernel Regression (AAKR) is a 

type of similarity based model which is a nonparametric 

modeling technique that uses the similarity of a query 

vector to memory or exemplar vectors to infer the 

model's response [1].  AAKR is a nonparametric, data-

driven modeling technique that uses historical, fault-free 

observations to correct faults in current observations. 

For a simple single-input, single-output (SISO) 

regression model, where the input x is used to estimate 

the output y, the Nardaraya-Watson estimator is: [1] 
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where: n is the number of exemplar observations in the 

AAKR model 

 Xi and Yi are the input and output for the i
th
 

exemplar observation  

 x is a query input 

 ( )hdK ,  is a weighting or kernel function, 

which generates a weight (similarity) for a 

given difference of a query from an exemplar 

vector 
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 h is a kernel’s bandwidth 

 d is a distance between query input and 

exemplar vector which is calculated the 

following equation 
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( )xŷ  is an estimate of y, given x 

For a query observation of the inputs, the AAKR 

estimation process can be structured into three steps.  

First, the distance of the query from each of the input 

exemplars is calculated.  Next, the distances are 

supplied as inputs to a kernel function, which converts 

the distances to weights (similarities).  Finally, the 

weights are used to estimate the output by calculating a 

weighted average of the output exemplars.  These steps 

are depicted in Figure 2.1.[3] 

 

 
 

Figure 2.1 Process diagram for kernel regression 

prediction algorithm 

 

3. Uncertainty Analysis Method of AAKR 

There are basically two methods which are developed 

to analyze the uncertainty of AAKR.  The analytic and 

Monte Carlo methods for calculating uncertainty are 

described in ref.[3]. Analytic uncertainty is estimated 

through equations derived from the model's 

mathematical architecture. Analytic uncertainty can be 

evaluated during model implementation to estimate the 

uncertainty for each prediction. The Monte Carlo 

uncertainty, however, is much more computationally 

intensive. As such, it is generally evaluated prior to 

model implementation. This uncertainty estimate is 

applied to each model prediction. Monte Carlo 

uncertainty is estimated by applying a Monte Carlo re-

sampling technique. With Monte Carlo techniques, the 

training data is resampled multiple times and for each of 

these resampled datasets, a new model is constructed. 

The variation between all of these models is then taken 

as a measure of the variance portion of the total 

uncertainty. The uncertainty estimate is applied to the 

denoised residuals of the model. Figure 3.1 shows the 
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process diagram for Monte Carlo uncertainty. This 

uncertainty is used to construct a confidence interval(CI) 

centered at zero, the expected value of the denoised 

residuals. The residual coverage is then calculated as the 

fraction of denoised residuals contained within the 

confidence interval. 

For a confidence level of α−1 , the CI may be written 

as:[2] 
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where: n is the number of training observations 

 p is the number of variables used to infer y 

 2,αpnt −  is the t-statistic which approximates the 

normal distribution for pn −   degrees of freedom and 

confidence level α−1  

 ( )yE ˆ  is the expected model prediction of y 

 

 
Figure 3.1 Process Diagram for Monte Carlo 

Uncertainty Estimation 

 

4. Results and Discussion 

In order to check the applicability of AAKR method 

and its uncertainty analysis method, the RCS flow loop 

The real measurement data are used. The data sets are 

composed of 10,000 of training data, 30,000 of test data 

and 30,000 of validation data.  The sampling time is 30 

seconds.   

With these data, prediction accuracies, uncertainties 

which are calculated by using two methodologies and 

detectabilities are presented.  The detectability is 

defined as follows,[3] 
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where: 
iU  is sensor i's model uncertainty (95% CI) 

span(x) is sensor x’s span 

SA,i is sensor i's auto-sensitivity. 

 

   Per Table 4.1, the prediction accuracies are less than 

0.04%  which are very accurate because those signals 

are well correlated.   The analytic uncertainties are about 

0.1% which are bigger than Monte Carlo Uncertainties.  

This means analytic method is more conservative than 

Monte Carlo method. The detectabilities are less than 

0.4%. These are well below 1% which is a typical 

instrument drift limit of 1%. 

 

Table 4.1 : Results of uncertainty analysis for AAKR 

 

 Signal 1 Signal 2 Signal 3 

Signal Noise Estimate 

(%span) 
0.14 0.14 0.129 

Correlation Coefficients of the Signals 

Signal 1 1 0.839 0.814 

Signal 2 0.839 1 0.801 

Signal 3 0.814 0.801 1 

Accuracy (%span) 0.0335 0.0299 0.0273 

Auto-Sensitivity 0.652 0.694 0.642 

Cross-Sensitivity 0.147 0.175 0.128 

Detectability (%span) 0.316 0.361 0.284 

0.11 0.11 0.102 Analytic Uncertainty 

(%span) and its 

Coverage 1 1 1 

0.0306 0.0288 0.0275 MonteCarlo Uncertainty 

(%span) and its 

Coverage 0.799 0.924 0.959 

 

 

5. Conclusion 

Per the reasonable uncertainties and detectabilities, 

AAKR method and its uncertainty analysis method 

which are presented in this paper are applicable to the 

RCS flow estimation for power plants.  
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