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1. Introduction 

 

Recently, there have been some efforts to devise the 

effective acceleration methods
1,2,3,4 

by using the 

diffusion equation derived without consistency with the 

transport equation and study theoretically the relation
5
 

between these methods and the conventional coarse 

mesh rebalance (CMR) equation. However, to our 

knowledge, there have been no effective methods giving 

a satisfied fast convergence for full range of mesh size. 

In this paper, a generalized rebalance method (GRM) 

having two parameters (at present, only fine-mesh case 

is considered) for solving the discrete ordinates 

transport problems is given. The parameters are related 

with the coupling coefficient and an interpolation. It is 

shown that for the step characteristic (SC) and the 

diamond difference (DD) schemes, this method with a 

choice of the optimal parameters gives a very fast 

convergence for full range of mesh size. 

 

2. Theory and Methodology 

 

In this method, to derive the acceleration equations, 

the following relationship between the interface angular 

flux and the cell average scalar fluxes are assumed: 
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where ν is a parameter related with the diffusion 

coefficient. The coefficient α is updated by 
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Integrating of the first equation of Eq.(1) over µ  after 

multiplying 
mµ  for 0>mµ , changing the index l+1/2 in 

the partial current and in the scalar flux of the numera-

tors by l+1, and using the interpolation of the scalar 

fluxes in the denominators give 
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where τ is an interpolation parameter. This partial 

current and its counterpart for opposite direction can be 

used to obtain the neutron balance equation and the 

resulting neutron balance equation has just a tri-

diagonal form. These acceleration equations can be 

linearized to be analyzed by using the Fourier analysis 

method. The linearized form of the partial current given 

in Eq.(3) is given by 
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Some simple algebra shows that the linearized partial 

currents of FMR, CMFD, and p-CMFD can be obtained 

by choosing the parameter ν as follows; 
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where D is the diffusion coefficient (=1/(3σ)) and h is 
the mesh size. The relation of Eq.(5b) was derived in 

Ref. 5 independently. The quantity of this parameter 

(i.e., ν) times t has the same physical meaning as the 

D/h. The result of the spectral radius through the 

Fourier analysis is given by 
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3. Numerical Analysis and Results 

 

The results of the Fourier analysis through 

linearization are given in this section. For this analysis, 

a homogeneous infinite medium having the scattering 

ratio of 0.999 is considered. All analyzes are performed 

with S16 angular quadrature set. For the Diamond 

Difference (DD) scheme, the following five acceleration 

methods are inter-compared ; (1) FMR with τ=0.0, (2) 

FMR with τ=1.0, (3) CMFD with τ=0.0, (4) p-CMFD 

with τ=0.0, and (5) GRM with τ=τopt and ν=νopt. The 

optimum values of the parameters τ and ν are obtained 
numerically with Eq.(6). Fig. 1 shows the spectral radii 

of these methods versus mesh size (mfp). As shown in 

this figure, all methods except for GRM with the 

optimal parameters have divergence for large mesh size 

region (σh>2.0) but GRM with the optimal parameters 

Transactions of the Korean Nuclear Society Spring Meeting
Jeju, Korea, May 10-11, 2007



    

has very fast convergence for all mesh sizes (the 

spectral radius is less than 0.2.). FMR has very narrow 

region of stable convergence near σh~1.0 and it with 

τ=1.0 has more wide region of stable convergence than 

FMR with τ=0.0. CMFD has good convergence for 

small mesh size region but its spectral radius increases 

rapidly as the mesh size approaches unity. Of all 

methods considered here except for GRM with the 

optimal parameters, p-CMFD has most wide region of 

stable convergence.  

For the step characteristic (SC) scheme, the 

followings six methods are compared; (1) FMR with 

τ=0.0, (2) FMR with τ=0.0 for σh≤1.0 and τ=1.0 for 

σh>1.0 (FMR-1 in Fig. 2(a)), (3) CMFD with τ=0.0, (4) 

CMFD with τ=0.0 for σh≤1.0 and FMR with τ=1.0 for 

σh>1.0 (FMR/CMFD in Fig. 2(a)), (5) p-CMFD with 

τ=0.0, and (6) GRM with with τ=τopt and ν=νopt. As 

shown in Fig. 2, FMR with τ=0.0 has very fast 
convergence for the optical thickness of a mesh larger 

than unity and its spectral radius decreases rapidly as 

the mesh size increases. However, for the mesh size (in 

mfp) less than unity, its spectral radius increases 

drastically and this method does not converge. The 

second method is a variation of FMR. In this method, 

the second parameter τ is set to unity for mesh size (in 

mfp) larger than unity. Fig. 2 shows that this effect of 

the second parameter is very significant in enhancing its 

convergence. The spectral radius drastically decreases 

as the mesh size increases. CMFD with τ=0.0 gives very 

fast convergence up to σh~1.5 but its spectral radius 
increases rapidly and becomes unstable for larger mesh 

size region. The fourth method that is a combination of 

the second and third methods has very fast convergence 

and its spectral radius is less than 0.225 for all mesh 

sizes.  The p-CMFD method with τ=0.0 has very good 
convergence for all mesh sizes, its maximum value of 

spectral radius is 0.297. Of these all methods, GRM 

with the optimal parameters shows best convergence 

that is stable for all mesh sizes.  

 

4. Conclusions 

 

In this paper, a rapidly convergent generalized 

rebalance method for the discrete ordinates transport 

equations is presented.  This method has two parameters 

that are related with the coupling coefficient and the 

interpolation. The convergence of this rebalance method 

with the Fourier analysis was analyzed for DD and SC. 

The results show that it is possible to obtain a very 

efficient acceleration method having very fast 

convergence for full range of mesh size by using the 

optimal parameters. However, the applicability of this 

method for practical problems has not been analyzed 

and it will be valuable if the convergence of this method 

for the problems divided into coarse meshes comprised 

of several fine meshes is analyzed in the future. 
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Fig. 1 Comparison of the spectral radii for DD 
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Fig. 2 Comparison of the spectral radii for SC 
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