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1. Introduction 

 

Recently, an error quantification [1] for the axial 

kernel of the DeCART code was performed for a 

demonstrative problem, and it revealed that the 

homogenization error is negligible, but the diffusion and 

the nodal errors are greater than 100 pcm. This paper 

introduces a SP3 approximation [2] to reduce the 

diffusion error, and a SANM solution [3] and a sub-

plane scheme to reduce the nodal error. The proposed 

approaches are examined for the demonstrative problem 

and the C5G7MOX 3-D extension problems [4]. 

 

2. Axial Solution integrated CMFD Equation 

 

The nodal neutron balance equation for a CMFD 

formulation used in the DeCART code can be written 

for a homogenized node (l,k) as: 
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where skl

radJ
,, , skl

zJ
,, , kl ,φ  and iS  are the net currents to 

the radial and the axial surfaces, the node averaged flux 

and the source including the fission and the scattering, 

and l

radN  and k

zN  are the number of neighboring nodes 

for the radial and the axial directions, respectively.  

The radial net current in the CMFD formulation can 

be written as: 
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where RklD ,,~
, RklD ,,ˆ  are the coupling term of the 

ordinary finite difference method (FDM) and the current 

corrective term, respectively.  

 

3. Systematic Error Reduction 

 

3.1. Reduction of Nodal Error 

 

A nodal error originates mainly from: (1) an 

inaccurate flux shape approximation and (2) an 

inaccurate transverse leakage approximation. The error 

resulting from the flux shape approximation can be 

resolved by introducing the higher order nodal solution 

of SANM of Ref. 3 or a sub-plane scheme where the 

MOC plane is divided into multiple nodal planes. The 

error resulting from the transverse leakage 

approximation can be resolved by introducing an 

accurate transverse leakage model. 

In the sub-plane method, multiple planes to obtain the 

radial CMFD and the axial nodal solutions are defined 

within the thick MOC planes. The planar MOC 

calculation is only performed at the thick MOC planes 

to produce the cell homogenized cross sections of Eq. 

(1) and the current corrective term of Eq. (2). Multiple 

planes that belong to a MOC plane use the same 

homogenized cross sections and current corrective terms. 

Eq. (1) is solved for all the sub-planes and the radial 

nodes. Table 1 shows the solution errors of the sub-

plane scheme from the conventional multi-plane 

schemes for the IM case of the demonstrative problem. 

This Table shows that the sub-plane scheme produces 

almost the same solution as the conventional multi-

MOC plane scheme with lesser computing time than the 

conventional scheme. 

 

Table 1. Solution Errors of the Sub-Plane Scheme for 

the IM Case of the Demonstrated Problem 

Nsp
1)
 

keff Error
2)
, 

pcm 

Power Error, 

% 

CPU Time 

Ratio
3)
 

2 -6.3 -0.01 0.534 

5 -0.3 -0.02 0.214 

10 -0.2 -0.03 0.046 

1) Number of sub-planes per MOC plane 

2) Reference: the conventional multi plane scheme 

3) Relative computing time of the sub-plane scheme to 

the conventional scheme 
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Fig. 1 Pin-level radial leakage axial profile 

 

The conventional NEM approximates the 1-D 

transverse leakage shape by using the three transverse 

leakages of a node average and two surface values. This 

approximation has been successful for an assembly-

based nodal calculation because the transverse leakage 

varies smoothly between the nodes. However, as shown 

in Fig. 1 for the pin calculation, the transverse leakage 

varies sharply at the interface between the unrodded and 

the rodded nodes. In this case, the transverse leakage 
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shape from the conventional approximation which is 

noted by a red line in Fig. 1 is not valid. Therefore, a 

new scheme for a pin-based transverse leakage by using 

the intra-nodal flux shape is proposed. In the proposed 

scheme, the second order transverse leakage shape is 

obtained from the three partly averaged transverse 

leakages which are achieved by using the partly 

averaged fluxes and Eq. (2). The proposed transverse 

leakage shape which is also noted by a blue line in Fig. 

1 follows the reference shape well. 

 

3.2. Introduction of a SP3-NEM solution 

 

The odd-order outgoing partial moments at the 

surfaces of node (l,k) can be manipulated as: 
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The two subscripts of the angular moments in Eq. (3) 

mean the angular and spatial orders. The governing 

equations can be derived by inserting Eq. (3) to Eq. (1). 

In solving the SP3 equation, the nodal balance 

equation for the second order angular moment is also 

required such as Eq. (1). The radial current for this 

second order equation is approximated by using the 

finite difference method rather than CMFD. 

 

4. Benchmark Calculation 

 

Tables 2 and 3 show the computational results for the 

newly implemented features of the DeCART axial 

kernel. The final solution for the diffusion calculation 

can be obtained by using 5 sub-planes which contain a 

negligible nodal error. The newly implemented 

transverse leakage scheme shows less nodal errors than 

the conventional scheme when comparing the solutions 

of one sub-plane with those of 5 sub-planes. The SANM 

solutions when using one sub-plane and the newly 

implemented transverse leakage scheme show less nodal 

errors than the NEM solutions. Table 1 also shows that 

the final diffusion solutions contain more than 100 pcm 

of diffusion errors. These diffusion errors on the 

eigenvalue can be reduced considerably by introducing 

the SP3 equations. The pin power error is also reduced 

by introducing the SP3 equations, but the effects are less 

than those on the eigenvalue. The final solution of the 

DeCART code for this benchmark problem shows less 

than 30 pcm of an eigenvalue and 2 % of local pin 

power errors. 

 

5. Conclusion 

 

In this paper, the SANM solution, sub-plane scheme 

and a new transverse leakage approximation were 

introduced to reduce the axial nodal error and the SP3-

NEM solution was introduced to reduce the diffusion 

error of the DeCART code. The benchmark calculation 

showed that the newly implemented axial solvers 

eliminated most of all the nodal and diffusion errors. 

 

Table 2. Solution Errors of DeCART Diffusion 

Kernel for C5G7MOX 3-D Extension Problem 

Problems TL Nsp
1)
 Nodal Err-k

2)
 Err-P

3)
 Err-P

4)
 

NEM -63.8 1.88 0.78 
1 

SANM -6.2 3.81 0.74 Conv. 

5 Both 95.4 1.92 0.72 

NEM -157.5 4.65 0.84 
1 

SANM -101.1 2.18 0.71 

5 Both -99.5 1.99 0.70 

Unrod 

New 

5 Both -99.4 1.60 0.68 

NEM 4.5 5.95 0.72 
1 

SANM -43.6 3.33 1.13 Conv 

5 Both -182.1 2.28 1.40 

NEM -163.3 2.48 1.07 
1 

SANM -160.7 1.98 1.24 

Rodded 

Conf. B 

New 

5 Both -175.9 2.19 1.35 

2) Eigenvalue Error, pcm 

3) Maximum local pin power error, % 

4) Maximum axially integrated pin power error, % 

 

Table 3. Solution Errors of DeCART SP3 Kernel for 

C5G7MOX 3-D Extension Problem 

Problems TL Nsp
1)
 Err-k

2)
 Err-P

3)
 Err-P

4)
 

1 12.2 1.75 0.84 
Conv. 

5 -14.4 1.65 0.76 

1 -75.0 4.47 0.82 
Unrod 

New 
5 -19.6 1.77 0.75 

1 95.7 2.80 1.11 
Conv. 

5 -11.0 1.80 0.74 

1 -29.6 4.66 1.09 

Rodded 

Conf. A 
New 

5 -9.8 1.84 0.77 

1 147.2 7.69 0.81 
Conv. 

5 -40.8 1.41 0.95 

1 -19.9 3.90 0.69 

Rodded 

Conf. B 
New 

5 -31.4 1.49 0.87 
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