Wall-Thinning Rate Evaluation of Pipes under Accelerated Flow Condition

S.M Lee, a J.M. Kim, a Y.S. Chang, a J.B. Choi, a Y.J. Kim, a Y.H. Choi, b

a School of Mechanical Engineering, Sungkyunkwan Univ., 300 Chunchun-dong, Jangan-gu, Suwon, Kyonggi-do

440-746, Korea, yjkim50@skku.edu

b Korea Institute of Nuclear Safety, 19 Guseong-dong, Yuseong-gu, Daejeon 305-338, Korea

1. Introduction

The wall-thinning phenomenon due to flow accelerated corrosion (FAC) has been considered as an important issue for integrity evaluation of nuclear piping systems. The failure accident of a feedwater pipe at Mihama Unit 3 nuclear power plant was a typical case caused by FAC [1]. In order to maintain the integrity of nuclear pipes during operation, the wall-thinning rate should be predicted by reliable engineering solutions based on experimental FAC tests [2,3]. In this paper, a closed form solution of wall-thinning rate for a nuclear piping system is proposed using the CHECWORKSTM program and the Chexal-Horowitz model [4,5].

2. Chexal-Horowitz Model

The Chexal-Horowitz model based on experimental test data generally includes water chemistry(dissolved oxygen, pH), environment(temperature, mass transfer, geometry, void fraction) and alloy content(Cr/Mo/Cu) parameters. The general formulation of this model in two phase flow condition is as follows:

$E = F_1(T) \times F_2(AC) \times F_3(MT) \times F_4(O_2) \times F_5(pH) \times F_6(G) \times F_7(\alpha)$ (1)

where, *E* is wall-thinning rate(*mils/yr*), $F_1(T)$ is factor for temperature effect, $F_2(AC)$ is factor for alloy content effect, $F_3(MT)$ is factor for mass transfer effect, $F_4(O_2)$ is factor for dissolved oxygen effect, $F_5(pH)$ is factor for pH effect, $F_6(G)$ is factor for geometry effect and $F_7(\alpha)$ is factor for void fraction.

The CHECWORKSTM program utilizes this model to calculate the wall-thinning rate of piping components.

3. Problem Descriptions

As shown in Figure 1, a feedwater line of secondary piping systems was selected under the internal pressure of 900 psi, temperature of 440°F and single phase water. The pipe is made of SA 106 Gr.B steel. The specific data of operation period, water treatment, power level etc, which were provided by CHECWORKSTM program, was used to determine the effects of several FAC parameters.

4. Results and Discussions

4.1 Effects of FAC Parameters

As depicted in Figure 2, wall-thinning rate analyses under various operation conditions were performed to determine the effects of several FAC parameters such as pH, dissolved O_2 , chemical composition, mass transfer and etc. Table 1 represents the selected coefficient value of pipe shape.

Figure 1. The example drawing image of a feedwater line

Figure 2. The effects of chemistry and alloy contents parameters

Table 1. Selected coefficient value of pipe shape									
Shape	Expander		90	Straight	Valve	45	Orifice	Reducer	
	LE	SE	Elbow	Pipe	vaive	Elbow	onnee	LE	SE
Coeff.	1.2	1.4	1.5	1.0	2.0	1.3	5.0	1.4	1.5

4.2 Proposed Wall-Thinning Rate Formulation

The maximum wall-thinning rate of a typical piping system made of carbon steels occurs at about 300°F. Accordingly a modified formulation of wall-thinning rate was proposed at temperature of 300°F and single phase flow (water) :

$$E = C_1 \{F_1(AC) \times F_2(O_2) \times F_3(pH) \times F_4(G) \times F_5(MF)\} - C_2$$

$$F_1(AC) = -5.8729 \ln(AC) - 1.945$$

$$F_2(O_2) = 31.254 \exp(-0.0431O_2)$$

$$F_3(pH) = 0.6697 pH^4 - 11.599 pH^3 + 0.9566 pH^2 \qquad (2)$$

$$+ 799.78 pH - 3186.8$$

$$F_4(G) = 1 \quad for \ straight \ pipe$$

$$F_5(MF) = 1 \quad at \ flow \ rate = 3.616 \ Mlb \ / hr$$

where, C_1 and C_2 are coefficients of total wall-thinning rate, *E*, which are presented in Figure 3.

4.3 Discussions

For same analysis cases, the wall-thinning rate using the proposed Eq. (2) was generally calculated higher than that utilizing the CHECWORKSTM program and the comparison results were shown in Figure 4.

Figure 4. Comparison of wall-thinning rate between proposed Eq. (2) and CHECWORKSTM program

5. Conclusion

A modified formulation of wall-thinning rate for a nuclear piping system was proposed using the CHECWORKSTM program and the Chexal-Horowitz model.

REFERENCES

[1] Korea Institute of Nuclear Safety, Accident Review Report of Mihama Unit 3 Nuclear Plant, KINS Report-040809F1, Korea, 2004.

[2] V.W. Kastner and K. Riedle, Empirishes Modell zur Berechnung von Materialabtragen durch Eorsionkorrosion, VGB Kraftwerkstechnik 66, pp. 1171-1178, 1986.

[3] H. Keller, Corrosion and Erosion Problems in Saturated-Steam Turbines, AIM Conf., pp. 22-28, 1978.

[4] B. Chexal, J. Horowitz, B. Dooley, P. Millett, C. Wood, and R. Jones, Flow-Accelerated Corrosion in Power Plant, EPRI/TR-106611-R11998.

[5] Electric Power Research Institute, CHECWORKS Computer Program User Guide, EPRI/TR-103496, 1994.