Analysis of Uranium Sample by γ-spectrometry

Hwan-Sik Kim^a, Suk-Kwon Kim^b and H. D. Choi^a

^aSeoul National University, Sillim-dong, Gwanak-gu, Seoul, 151-742, Korea, vandegra@plaza.snu.ac.kr ^bKorea Atomic Energy Research Institute, Deokjin-dong, Yuseong-gu, Daejeon, 305-303, Korea

1. Introduction

The γ -ray spectrum of depleted UO₂ powder sample was measured with a HPGe detector. The mass ratio of ²³⁵U to ²³⁸U can be obtained by measuring the γ -peaks from each radioisotope. But, because the γ -peaks from ²³⁸U were not distinguishable from background on the spectrum, analysis was performed by using the fact that secular equilibrium between ²³⁸U and ^{234m}Pa has been attained.

2. Mathematical Method

Secular equilibrium between 238 U, 234 Th and 234m Pa is achieved because the half-life of 238 U is much longer than those of 234 Th and 234m Pa [1] as shown in figure 1.

$$^{238} \text{U} \xrightarrow[\alpha, 4.5 \times 10^9 y]{}^{234} \text{Th} \xrightarrow[\beta^-, 24.1d]{}^{234\text{m}} \text{Pa} \xrightarrow[\beta^-, 1.17 \text{min}]{}^{234} \text{U}$$

Figure 1. Decay scheme of ²³⁸U.

Hence it is possible to calculate the mass ratio of 235 U to 238 U (m₂₃₅/m₂₃₈) by using the 1001.0 keV and 185.7 keV γ -peaks from 234m Pa and 235 U. In case of 234 Th, it is difficult to analyze because of the interference with other γ -peaks. The mass ratio can be calculated by equation (1),

$$\frac{\mathrm{m}_{235}}{\mathrm{m}_{238}} = \frac{\mathrm{A}_{235}/\mathrm{SA}_{235}}{\mathrm{A}_{238}/\mathrm{SA}_{238}} \tag{1}$$

where A and SA are activity and specific activity of each radioisotope. The activity was calculated from the peak count rate with considering the emission probability, detector efficiency and self-absorption correction factor. The emission probabilities used in the calculation were specified in Table of Isotopes [1] and the self-absorption correction factor, κ , was determined by Integrated Lambert-Beer law [2] defined in equation (2),

$$\kappa(\mathbf{E}_{\gamma}) = \frac{\mu(\mathbf{E}_{\gamma})\mathbf{d}}{1 - \exp[\mu(\mathbf{E}_{\gamma})\mathbf{d}]}$$
(2)

where $\mu(E_{\gamma})$ and d are mass-absorption coefficient of photon of energy E_{γ} and sample thickness, respectively.

3. Experiment and Results

The mass and thickness of measured sample were 154 ± 1 mg and 1.0 ± 0.1 mm. A closed ended coaxial

type HPGe detector was used in the measurement. The relative efficiency of the HPGe detector is 18% and the energy resolution is 1.8 keV at 1.33 MeV γ -peak from ⁶⁰Co. Source-to-detector distance was 5 cm and the efficiency curve was recalibrated. The measurement time was 39 hours.

Measured sample spectrum is shown in figure 2. 185.7 keV and 1001.0 keV γ -peaks are marked on the spectrum. The count rates of peaks are 0.239±0.004 and 0.053±0.001 cps, respectively. The derived activities and mass ratio are shown in table 1.

Figure 2. Measured spectrum of the UO₂ sample.

Table 1. Calculated activity and mass ratio.

Radio- isotope	Activity [Bq]	SA [Bq/g]	Mass ratio [%]
²³⁵ U	31.9±0.3	7.99×10 ⁴	
²³⁸ U	2319.5±27.	1.24×10 ⁴	0.21±0.01

4. Conclusions

An analysis of UO₂ sample was performed with HPGe detector. The activities of ²³⁵U and ²³⁸U were measured considering the secular equilibrium condition and self-absorption correction. From the activities, mass ratio of ²³⁵U to ²³⁸U was derived and the result was 0.21±0.01%. It is reasonable compared with the normal mass ratio of the depleted uranium (0.2 ~ 0.4%).

REFERENCES

[1] R.B. Firestone, V.S. Shirley, Table of Isotopes, 8th ed., Wiley, New York, 1996.

[2] K. Siemon, R.A. Esterlund, J.V. Aarle, M. Knaack, W. Westmeier and P. Patzelt, A New Measurement of the Gamma-ray Intensities of ²³⁴mPa Accompanying the Decay of ²³⁸U, Applied Radiation and Isotopes, Vol. 43, p. 873, 1992.