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1. Introduction 
 

The recent version of MARS code (MARS 3.1) [1] 
has been enhanced over the previous version of MARS 
for several important models for the last couple of years. 
The most prominent enhancement that distinguishes 
MARS versions 3.X from the previous MARS versions 
2.X is the fully multi-dimensional thermal-hydraulic 
modeling capability in the recent MARS code. This 
makes it possible to examine detailed behaviors where 
multi-dimensional effects may occur. This enhancement, 
however, makes the problem size too large to be able to 
efficiently handle it by using the default direct sparse 
matrix solver. To effectively solve the wide-banded 
system of linear equations for a multi-dimensional 
component, the latest version of RELAP5 replaced its 
default solver with the Border Profiled Lower Upper 
(BPLU) matrix solver which is designed to solve 
"nearly-banded" coefficient matrices directly [2]. 
However, direct matrix solvers usually cause the 
problems as the matrix size becomes larger because 
operation count for this method is proportional to third 
power of the matrix size and the truncation error during 
the forward and backward sweeps increases. The new 
iterative sparse matrix solver has been implemented to 
the latest version of MARS to efficiently solve sparse 
linear systems. The accompanying advantage of using 
an iterative solver is that this solver is easy to take 
advantage of a parallel machine. This paper will briefly 
describe the iterative solver and the evaluation results.  

 
2. Iterative Sparse Matrix Solver 

 
Preconditioned bi-conjugate gradient (PBCG) 

method [3] is implemented in MARS to efficiently 
solve sparse linear systems of the form bxA =⋅ . 
Many variations of conjugate gradient methods exist 
and the bi-conjugate gradient method used in this 
application is specially designed to solve linear, but not 
necessarily symmetric equations. The attractiveness of 
these methods is that they reference A only through its 
multiplication of a vector, or the multiplication of its 
transpose and vector which can be very efficient for a 
properly stored sparse matrix. The conjugate gradient 
method is based on the idea of minimizing a function, 
whose gradient can be reduced to an original linear 
equation, instead of solving the original linear equation. 
Precondition is applied to the bi-conjugate gradient 
method to increase the rate of a convergence. Since the 
structures of matrix A  depend on problems and they 
are different for every problem, it is very hard to 

determine a preconditioner which works for every 
problem. For this reason matrix A has been used as a 
preconditioner in this application. The matrix structure 
of MARS used for most problems is mainly tri- (for 1D 
problem) and/or a band-diagonal (for multi-D problem) 
matrix with a few none zero elements. It is surely 
inefficient to allocate storage for all the elements 
including zero elements in a memory management 
aspect and prohibitive in machine time to loop over the 
entire matrix in search of nonzero elements. Not to 
waste operations on zero entries, an indexed storage 
scheme which stores only none zero matrix elements 
along with the auxiliary information for the locations of 
the none zero elements is used.  

In the MARS 3.X code, this iterative sparse matrix 
solver has been implemented as an option and tested 
with various types of MARS inputs.  The option 99 in 
card 1 has to choose to select a PBCG method instead 
of the previously used direct sparse matrix solver for 
the solution of hydraulic equations. Instead of using the 
same solution scheme for the entire problem, a user can 
select the solution scheme for each loop in a problem 
by changing the value of the 5th word in cards 121-129 
i.e., 0 and 1 are for a direct sparse matrix solver which 
is a default solver; 2 and 3 are for the PBCG method. 
This input feature is very useful because a MARS input 
can include many loops in one problem and some loops 
may be too small to use the PBCG method. 

PBCG is inherently parallelizable since its operations 
are independent of each other. Therefore, MARS is 
ready to take advantage of a shared-memory and a 
distributed-memory parallel architecture to run fast.  

 
3. Performance Evaluation 

 
Speedups are achieved for MARS running with the 

PBCG method over a previously used direct sparse 
matrix solver which is a default solver. For almost all 
one-dimensional problems, there is no speed-up or as 
fast; however, for problems with wider bandwidths, 
especially those with three-dimensional regions, for 
which it was intended, significant speed-ups may be 
achieved. One of the evaluation problems which uses 
the multi-d component illustrates a significant reduction 
in run time that can be achieved. The problem selected 
for an illustration is a simple 2-d vertical plate 
subdivided into an equal number of volumes in x- and 
y- directions. The test system was initially filled with 
single phase water and the transient starts with an air 
injection at the lower part of the left side at time zero 
second and a time dependent volume was attached to 
the top-right side as shown in Figure 1. Five cases were 

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, November 2-3, 2006

1/2



 

 

examined with this model by changing the size of the 
test problem. Table 1 compares the total CPU times, the 
CPU time for solving linear equations and the average 
iteration number per each time step for the PBCG 
solver for the five cases for the default sparse matrix 
solver and the PBCG solver on the PC equipped with 
Pentium D CPU 3.4GHz and 1 GB ram. For PBCG, the 
convergence criterion for relative error was used as 10-

10. Results show that the speedup becomes larger with 
the size of the problem and their calculation results are 
almost identical with little differences in the least 
significant numbers. The minimum size to achieve a 
speedup is about 250 volumes.  

 
TDV

 
Figure 1. 2-d flow problem 

 
Table 1. Comparison of run times for 2d-flow problems using 
default and PBCG solver 

 No. of volumes 270 450 900 1800 2916

 Total (s) 55 124 477 1289 2162Direct 
scheme   Matrix (s) 9.4 39 272 788 1564

 Total (s) 55 106 258 644 734 

  Matrix (s) 10.2 21 54 143 142 PBCG 

  avg. iteration 79 97 123 164 189 

  Total 1.0 1.2 1.85 2.0 2.95Speed 
up 

   Matrix  0.92 1.85 5.04 5.51 11.01

 
Many other cases have been examined with various 

types of problems to evaluate the new solver. Table 2 
includes two problems for a 1-d case and 2 problems 
for a 3-d case. First case is the Marviken test problem 
[4] which is modeled as a 1-d problem with 45 volumes. 
For the second case, one of the standard installation 
problems, “typpwr.i” has been used, which includes 
107 volumes for the primary loop and 16 volumes for 
each secondary side of two SGs. As expected, no-
speedup was achieved for both 1-d cases. Third case is 
examined with the model for the Panda experiment [4], 
which includes multi-d components with a total of 3415 
volumes. The speedup for this case was 1.3 which is 
much worse results than expected. The reason is that 
the “dead volumes” used to model the Panda 
experiment make all the matrix elements close to zero 
including the diagonal element for the corresponding 
row and increase the iteration number to converge. To 
confirm this explanation, the last case which includes a 
multi-d component with 2415 volumes and no “dead-
volume” has been evaluated and a good speedup was 
obtained.   

Table 2. Comparison of run times for various problems using 
default and PBCG solver 

1-d case 3-d case 
 Problems Marviken 

45 
Typpwr 

107/16/16 
Panda
3415

Tank
2425

 Total (s) 28.8 17.3 3811 1731Direct
scheme   Matrix (s) 0.27 0.14 2101 1240

 Total (s) 30.9 21.2 3034 647 

  Matrix (s) 3.17 1.71 1142 128 PBCG

  avg. iteration 42 114 404 185 

  Total 0.93 0.82 1.3 2.7 Speed
up 

   Matrix  0.3 0.1 1.84 9.68

 
3. Conclusion 

 
The iterative sparse matrix solver, preconditioned bi-

conjugate gradient method, is adopted to the latest 
version of MARS to efficiently solve the large sparse 
linear systems. As can be seen from the previous 
section, speed-ups over a previously used direct sparse 
matrix solver are achieved in MARS equipped with an 
iterative solver for multi-dimensional problems with 
size over ~250 which it was intended. For one-
dimensional problems, this solver runs as fast or faster 
than the previously used direct solver. There is some 
room for further improvement for the treatment of the 
“dead volumes” in a multi-d component by eliminating 
these volumes from the equation system to be solved.  

PBCG can inherently take advantage of a shared-
memory and a distributed-memory parallel architecture 
to run fast because its operations are independent of 
each other. The feasibility study for a parallelization of 
MARS is under way on the cluster PCs by using 
message passing interface technology [5]. 
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