

Application of an Iterative Solution Scheme to MARS

K. D. Kim, H. S. Lim and B. D. Chung
Thermal-Hydraulic Safety Research Division, Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong,

Daejeon, 305-353, kdkim@kaeri.re.kr

1. Introduction

The recent version of MARS code (MARS 3.1) [1]
has been enhanced over the previous version of MARS
for several important models for the last couple of years.
The most prominent enhancement that distinguishes
MARS versions 3.X from the previous MARS versions
2.X is the fully multi-dimensional thermal-hydraulic
modeling capability in the recent MARS code. This
makes it possible to examine detailed behaviors where
multi-dimensional effects may occur. This enhancement,
however, makes the problem size too large to be able to
efficiently handle it by using the default direct sparse
matrix solver. To effectively solve the wide-banded
system of linear equations for a multi-dimensional
component, the latest version of RELAP5 replaced its
default solver with the Border Profiled Lower Upper
(BPLU) matrix solver which is designed to solve
"nearly-banded" coefficient matrices directly [2].
However, direct matrix solvers usually cause the
problems as the matrix size becomes larger because
operation count for this method is proportional to third
power of the matrix size and the truncation error during
the forward and backward sweeps increases. The new
iterative sparse matrix solver has been implemented to
the latest version of MARS to efficiently solve sparse
linear systems. The accompanying advantage of using
an iterative solver is that this solver is easy to take
advantage of a parallel machine. This paper will briefly
describe the iterative solver and the evaluation results.

2. Iterative Sparse Matrix Solver

Preconditioned bi-conjugate gradient (PBCG)

method [3] is implemented in MARS to efficiently
solve sparse linear systems of the form bxA =⋅ .
Many variations of conjugate gradient methods exist
and the bi-conjugate gradient method used in this
application is specially designed to solve linear, but not
necessarily symmetric equations. The attractiveness of
these methods is that they reference A only through its
multiplication of a vector, or the multiplication of its
transpose and vector which can be very efficient for a
properly stored sparse matrix. The conjugate gradient
method is based on the idea of minimizing a function,
whose gradient can be reduced to an original linear
equation, instead of solving the original linear equation.
Precondition is applied to the bi-conjugate gradient
method to increase the rate of a convergence. Since the
structures of matrix A depend on problems and they
are different for every problem, it is very hard to

determine a preconditioner which works for every
problem. For this reason matrix A has been used as a
preconditioner in this application. The matrix structure
of MARS used for most problems is mainly tri- (for 1D
problem) and/or a band-diagonal (for multi-D problem)
matrix with a few none zero elements. It is surely
inefficient to allocate storage for all the elements
including zero elements in a memory management
aspect and prohibitive in machine time to loop over the
entire matrix in search of nonzero elements. Not to
waste operations on zero entries, an indexed storage
scheme which stores only none zero matrix elements
along with the auxiliary information for the locations of
the none zero elements is used.

In the MARS 3.X code, this iterative sparse matrix
solver has been implemented as an option and tested
with various types of MARS inputs. The option 99 in
card 1 has to choose to select a PBCG method instead
of the previously used direct sparse matrix solver for
the solution of hydraulic equations. Instead of using the
same solution scheme for the entire problem, a user can
select the solution scheme for each loop in a problem
by changing the value of the 5th word in cards 121-129
i.e., 0 and 1 are for a direct sparse matrix solver which
is a default solver; 2 and 3 are for the PBCG method.
This input feature is very useful because a MARS input
can include many loops in one problem and some loops
may be too small to use the PBCG method.

PBCG is inherently parallelizable since its operations
are independent of each other. Therefore, MARS is
ready to take advantage of a shared-memory and a
distributed-memory parallel architecture to run fast.

3. Performance Evaluation

Speedups are achieved for MARS running with the

PBCG method over a previously used direct sparse
matrix solver which is a default solver. For almost all
one-dimensional problems, there is no speed-up or as
fast; however, for problems with wider bandwidths,
especially those with three-dimensional regions, for
which it was intended, significant speed-ups may be
achieved. One of the evaluation problems which uses
the multi-d component illustrates a significant reduction
in run time that can be achieved. The problem selected
for an illustration is a simple 2-d vertical plate
subdivided into an equal number of volumes in x- and
y- directions. The test system was initially filled with
single phase water and the transient starts with an air
injection at the lower part of the left side at time zero
second and a time dependent volume was attached to
the top-right side as shown in Figure 1. Five cases were

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, November 2-3, 2006

1/2

examined with this model by changing the size of the
test problem. Table 1 compares the total CPU times, the
CPU time for solving linear equations and the average
iteration number per each time step for the PBCG
solver for the five cases for the default sparse matrix
solver and the PBCG solver on the PC equipped with
Pentium D CPU 3.4GHz and 1 GB ram. For PBCG, the
convergence criterion for relative error was used as 10-

10. Results show that the speedup becomes larger with
the size of the problem and their calculation results are
almost identical with little differences in the least
significant numbers. The minimum size to achieve a
speedup is about 250 volumes.

TDV

Figure 1. 2-d flow problem

Table 1. Comparison of run times for 2d-flow problems using
default and PBCG solver

 No. of volumes 270 450 900 1800 2916

 Total (s) 55 124 477 1289 2162Direct
scheme Matrix (s) 9.4 39 272 788 1564

 Total (s) 55 106 258 644 734

 Matrix (s) 10.2 21 54 143 142 PBCG

 avg. iteration 79 97 123 164 189

 Total 1.0 1.2 1.85 2.0 2.95Speed
up

 Matrix 0.92 1.85 5.04 5.51 11.01

Many other cases have been examined with various

types of problems to evaluate the new solver. Table 2
includes two problems for a 1-d case and 2 problems
for a 3-d case. First case is the Marviken test problem
[4] which is modeled as a 1-d problem with 45 volumes.
For the second case, one of the standard installation
problems, “typpwr.i” has been used, which includes
107 volumes for the primary loop and 16 volumes for
each secondary side of two SGs. As expected, no-
speedup was achieved for both 1-d cases. Third case is
examined with the model for the Panda experiment [4],
which includes multi-d components with a total of 3415
volumes. The speedup for this case was 1.3 which is
much worse results than expected. The reason is that
the “dead volumes” used to model the Panda
experiment make all the matrix elements close to zero
including the diagonal element for the corresponding
row and increase the iteration number to converge. To
confirm this explanation, the last case which includes a
multi-d component with 2415 volumes and no “dead-
volume” has been evaluated and a good speedup was
obtained.

Table 2. Comparison of run times for various problems using
default and PBCG solver

1-d case 3-d case
 Problems Marviken

45
Typpwr

107/16/16
Panda
3415

Tank
2425

 Total (s) 28.8 17.3 3811 1731Direct
scheme Matrix (s) 0.27 0.14 2101 1240

 Total (s) 30.9 21.2 3034 647

 Matrix (s) 3.17 1.71 1142 128 PBCG

 avg. iteration 42 114 404 185

 Total 0.93 0.82 1.3 2.7 Speed
up

 Matrix 0.3 0.1 1.84 9.68

3. Conclusion

The iterative sparse matrix solver, preconditioned bi-

conjugate gradient method, is adopted to the latest
version of MARS to efficiently solve the large sparse
linear systems. As can be seen from the previous
section, speed-ups over a previously used direct sparse
matrix solver are achieved in MARS equipped with an
iterative solver for multi-dimensional problems with
size over ~250 which it was intended. For one-
dimensional problems, this solver runs as fast or faster
than the previously used direct solver. There is some
room for further improvement for the treatment of the
“dead volumes” in a multi-d component by eliminating
these volumes from the equation system to be solved.

PBCG can inherently take advantage of a shared-
memory and a distributed-memory parallel architecture
to run fast because its operations are independent of
each other. The feasibility study for a parallelization of
MARS is under way on the cluster PCs by using
message passing interface technology [5].

ACKNOWLEDGEMENTS

This work has been performed as a part of the

Nuclear R&D Program supported by the Ministry of
Science and Technology (MOST) of the Republic of
Korea.

REFERENCES

 [1] MARS Code Manual: Volume I: Code Structure, System
Models, and Solution Methods, KAERI/TR-2812/2004, Korea
Atomic Energy Research Institute, 2004.
[2] G. L. Mesina, Border-Profile LU Solver for RELAP5-3D,
Proceedings of 1998 RELAP5 International User Seminar,
May 17-2l, 1998, College Station, Texas.
[3] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery, Numerical Recipes in C – The Art of Scientific
Computing, 2nd Edition, Cambridge University Press, New
York, 1992.
[4] MARS Code Manual: Volume IV: Developmental
Assessment Report, KAERI/TR-3042/2005, pp.97-102 and
pp.142:146, Korea Atomic Energy Research Institute, 2005.
[5] Massage Passing Interface Forum, MPI-2: Extension to
the message-passing interface, July 1997, http://www.mpi-
forum.org/docs/mpi2-report.html

2/2

	분과별 논제 및 발표자

