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1. Introduction 

SMART-P (System integrated Modular Advanced 

ReacTor) is an integral reactor being developed with 

indigenous technology and has many key design features 

that are highly unconventional in comparison to the 

commercially operating reactors. Such design features 

include self-pressurizing pressurizer, helically coiled once-

through steam generators, PRHRS (Passive Residual Heat 

Removal System), power operation under natural 

circulation, and twisted fuel rods of roughly square cross-

section.  

Because the safety analysis codes used for the 

commercially operating domestic nuclear reactors are not 

capable of describing such design features, these codes 

can not be applied in simulating SMART-P. Hence, it is 

essential to develop a regulatory technology specific to 

SMART-P designs with high degree of reliability in order 

to be able to verify the safety through audit calculations 

[1]. 

The main objectives of this study are to verify the 

validity of simulation results and to evaluate the adequacy 

of the system design by developing the SMART-P model 

and performing thermal-hydraulic analysis of small break 

LOCA (Loss Of Coolant Accident).  

In this study, the new RELAP5/SMR model of 

SMART-P was developed by considering the changes of 

the recent design information and SMART-P SAR (Safety 

Analysis Report) [2]. And the analysis of SBLOCA 

transients was calculated to support the licensing review in 

KINS.  

 

2. Methods and Results 

2.1 Improvement of Previous SMART-P Model for 

RELAP5/SMR Code 

RELAP5/SMR is a thermal-hydraulic system code for 

SMART-P developed on the basis of RELAP5/MOD3.3 

in such a way to modify inside model for simulating the 

heat transfer of helical tube steam generators, multi-

component two phase critical flow, etc [1, 3]. It was 

developed to establish the regulatory technology for 

SMART-P. The previous RELAP5/SMR model of 

SMART-P was based on the design information in 2002 [3, 

4]. But the design of SMART-P had being changed until 

the publication of SMART-P SAR (2005). So the new 

RELAP5/SMR model of SMART-P was developed by 

considering the changes of the recent design information 

and SMART-P SAR. 

The modified or added features are as follows; 

- Total volume of primary system 

- Number of gas cylinders 

- Location of safety injection (SI) pipe and break pipe 

- Primary steam generator model 

- Refueling water tank (RWT) model 

- Characteristics of MCP  

- Pressurizer operating temperature 

- Long term cooling by sump recirculation 

 

2.2 Thermal-hydraulic Modeling 

Fig. 1 shows RELAP5/SMR nodalization of SMART-P. 

The primary system includes core region, two main 

coolant pumps (MCPs), three pressurizer cavities (upper 

annular cavity, intermediate cavity, and end cavity), two 

gas cylinders, and twelve steam generator cassettes. 

The primary steam generator region consists of a bypass 

region and four heat exchange regions having three steam 

generator cassettes. 

The secondary system and PRHRS are modeled with 

four independent flow paths. Two RWTs function as water 

source of SI and heat sink of PRHRS. When the level of 

RWT decreases to RAS (Recirculation Activation Signal) 

point, the water source of SI changes from RWT to 

recirculation sump. 

 

2.3 SBLOCA Transient Analysis 

The initial steady-state conditions are well agreed with 

the design values for 103% power operation condition 

specified in the SMART-P SAR as shown in Table 1.  

The break at SI line was chosen as an event due to the 

potential for more serious decrease of collapsed water 

level in reactor vessel than any other events. 

It is assumed that the break is initiated at the SI pipe 

whose inner diameter is 25.4mm. After the break is 

initiated, the primary system depressurized rapidly due to 

blow-down of the coolant through break pipe. And the 

reactor is tripped by the low pressurizer pressure signal. 

Turbine is tripped with loss of off-site power at 3 sec after 

reactor trip. Then MCPs begin to coastdown, main 

feedwater/steam isolation valves begin to be closed, and 

PRHRS begins to be connected to the secondary system. 

MCPs stop causes the rapid decrease of core coolant 

flow. The feedwater from PRHRS exit region comes into 
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the bottom of steam generator, ascends through the helical 

tubes, and becomes superheated steam by absorbing the 

heat of primary system. This superheated steam goes into 

PRHRS inlet region, loses its energy by heat exchange 

with RWT, condenses into single phase liquid, and comes 

into the steam generator heat exchange region. These 

procedures are repeated and natural circulation flow is 

established.  

When the pressurizer pressure decreases below 

9.02MPa, SI is activated with delay time of 30 seconds. In 

the case of SI pipe break, the single failure is assumed, so 

only one SI line is activated.  

Fig. 2 shows the break discharge flow and SI flow 

calculated by RELAP5/SMR code and those calculated by 

licensee’s code, TASS/SMR code [2] respectively. In the 

simulation of RELAP5/SMR, SI from recirculation sump 

is activated by RAS at about 58366 sec. There are some 

differences in break discharge flows between 

RELAP5/SMR and TASS/SMR calculation results. These 

differences seem to be caused by the differences in 

governing equations, two-phase model, etc. in both codes. 

 Fig. 3 shows that TASS/SMR code is more 

conservative than RELAP5/SMR code from the viewpoint 

of the minimum collapsed water level. But the recovery 

time of collapsed water level by RELAP5/SMR (46126 

sec) is delayed compared with that by TASS/SMR (4605 

sec). And it can be concluded that activation conditions of 

the shutdown cooling system should consider whether the 

water level is higher than the suction duct of MCP in 

addition to the conditions of pressure (2.3MPa) and 

coolant temperature (200℃).  

In conclusion, there were no core uncovery and fuel 

temperature increase harming the fuel integrity after SI 

from recirculation sump is activated.  

 

3. Conclusion 

The safety analysis of SI pipe break accident was 

performed using RELAP5/SMR code and compared with 

the results from TASS/SMR code to support the licensing 

review in KINS.  

The calculation results of RELAP5/SMR code shows that 

the core is not uncovered even if SBLOCA happens. Also 

it was verified that there was a nonconservative feature in 

the prediction of reactor water level by TASS/SMR code.  
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Table 1.  Initial steady-state conditions 

Previous
RELAP5/SMR

SMART-P SAR
Modified

RELAP5/SMR
Reactor Power [MWt] 65.5 65.5 65.5

Pressurizer Pressure [Mpa] 14.7 14.7 14.9
Steam Common Header Pressure [Mpa] 3.2 ­ 3.21

RCS Total Flow [kg/sec] 350.0 326.0 326.0
Core Flow [kg/sec] 339.5 316.0 316.0

Core Bypass Flow [kg/sec] 10.5 10.0 10.0
Feedwater Flow [kg/sec] 24.024 24.024 24.024

Core Inlet Temperature  [oC] 274.5 272.2 275.155

Core Outlet Temperature  [oC] 310.0 310.0 312.576

Secondary SG Inlet Temperature  [oC] 50 50.0 50.0

Secondary SG Outlet Temperature  [oC] 283.0 281.8 285.242

Pressurizer Temperature  [oC] 75.1 50 49.941

Secondary steam superheated temperature  [oC] larger than 40. larger than 40. 47.547

RCP Speed [rad/sec] 376.99 376.99 376.99

RCP Head [kPa] ­ 60.0 61.2

Main Parameters
100% FP
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Fig. 1  RELAP5/SMR nodalization of SMART-P 
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Fig. 2   Break discharge and SI flows transients 
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Fig. 3   Collapsed water level transients 
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