Stress Analysis of IPS Support Frame

H. H. Lee, J. M. Lee, S. K. Park, C.Y. Lee

HANARO Utilization Technology Division, 3-Pin Fuel Test Loop R&D Department, Korea Atomic Energy Research Institute, P. O. B 105, Yuseong, Daejeon, 305-353 Ihanhee@kaeri.re.kr

1. Introduction

Fig. 1 shows the support frame which consists of a two leg structure of 250 mm x 100 mm box beams with flanged attachments to the existing box beam structure. The 250 mm x 100 mm box beams incorporate circular bolted clamps which support the vertical sections of the pipe covers for the hot and cold leg pipes to the IPS. These clamps form a Y-piece structure which is welded to the IPS support tube. The flanges on the two legs of the support frame are bolted onto pads welded onto the existing 254 mm x 254 mm box beam. The pads form part of the IPS Support Frame. The orientation of the axes is shown in Fig. 2.

Fig. 1 IPS Support Frame (Plan View) showing Boundary of Class 1 Support

Fig. 2 IPS Support Frame - Orientation of Axes

2. Design Requirements for IPS Support Frame

The principal loadings on the IPS Support Frame are:

- Weight of the IPS Support Frame and IPS
- Seismic loads
- Pipe break loads

In order to simplify the analysis, two enveloping load cases were considered:

- Case 1 where the Service Level B OBE load (assumed identical to the SSE load) were combined with Service Level A loads and the Level C Room 1 pipe break load, with acceptance based on code allowable stresses for Service Level A.

- Case 2, in which the loadings for the Service Level D in-pool pipe break event was combined with Level A loads, with acceptance based on code allowable stresses for Service Level D as defined in ASME III.

Since the SSE load is assumed in Case 1 this case covers the Level D SSE event.

This approach is highly conservative for:

- Service Level A stresses, since Level B and C loads are included

- Service Level B stresses, since Level C loads are included

- Service Level C stresses, since the OBE/SSE load is included

- Service Level D (SSE) stresses, since the Level C load is included

Additionally the approach taken in determining an envelope loading for the in-pool pipe break is considered to incorporate significant conservatism.

The IPS nozzle loads used for the Case 1 analysis are not identical to those determined in the Piping Analysis but incorporate significant conservatism.

3. Stress Analysis Results

The results for the locations with the smallest margins relative to code allowables are given in Tables 1 and 2 below. Reserve Factors, except where stated, are obtained by dividing the allowable stress by the calculated stress.

			Service Level
Location	Type of Stre	Calculated	Allowable Stress
	SS	Stress	
Weld connecting right leg end	Tensile	28.9 MPa	58.7 Mpa(A)
flange to box section			78.1 Mpa(B)
			88.0 Mpa(C)
			117.4 Mpa(D)
Screws connecting right leg e	Tensile	87.1 MPa	153.0 Mpa(A)
nd flange to box beam pad			203.4 Mpa(B)
			229.5 Mpa(C)
			268.9 Mpa(D)
	Combined te		
	nsile & shear		
Flange on stiffening rib at righ	Tensile bendi	41.8 MPa	88.1 MPa(A)
t leg end	ng		117.2 Mpa(B)
			132.1 Mpa(C)
			146.9 Mpa(D)
Right leg end flange	Tensile bendi	48.5 MPa	88.1 MPa(A)
	ng		117.2 Mpa(B)
			132.1 Mpa(C)
			220.3 Mpa(D)
Screws connecting left leg en	Tensile	79.7 MPa\$	153.0 MPa(A)
d flange to box beam pad			203.4 Mpa(B)
			229.5 Mpa(C)
			268.9 Mpa(D)
	Combined te		
	nsile & shear		
Weld connecting left leg end f	Tensile bendi	18.7 MPa	58.7 MPa(A)
lange to box section	ng		78.1 Mpa(B)
			88.0 Mpa(C)
	m 1.1.1.		117.4 Mpa(D)
Left leg end flange	Tensile bendi	44.4 MPa	88.1 MPa(A)
	ng		117.2 Mpa(B)
			132.1 Mpa(C) 220.2 Mma(D)
I - 0 1	Transfer from di	27.7 MD-	220.3 Mpa(D)
Left leg end flange upper stiff	Tensile bendi	57.7 MPa	88.1 MPa(A)
ening no	ng		117.2 Mpa(B)
			132.1 Mpa(C)
Sorows connecting V Biago to	Tancila	25.2 MPa	140.9 Mpa(D)
Loft Log	Tensile	55.2 WIF a	203.4 Mpa(P)
Len Leg			205.4 Mpa(B)
			29.5 Mpa(C) 268.9 Mpa(D)
	Combined te		200.7 Mpa(D)
	nsile & shear		
Weld connecting IPS support	Shear	15.2 MPa	58.7 MPa(A)
tube to Y Piece	Silvar	15.2 Hild	78.1 Mna(B)
			88.0 Mpa(C)
1			105.7 Mpa(D)
	Equivalent	31.2 MPa	88 1 MPa(A)
1	Squitaient	51.2 mi u	117.2 Mpa(B)
1			132.1 Mpa(C)
1			264.2 Mpa(D)

Table. 1 IPS Support Frame Stresses for Case 1 Loads

			Service Level D
Location	Type of Stre	Calculated	Allowable Stress
	SS	Stress	
Weld connecting right leg end flange to box section	Tensile	24.2 MPa	117.5 MPa
Screws connecting right leg e nd flange to box beam pad	Tensile	106.6 MPa\$	268.9 MPa
	Combined te nsile & shear		
Flange on stiffening rib at righ t leg end	Tensile bendi ng	59.4 MPa	220.3 MPa
Right leg end flange	Tensile bendi ng	54.5 MPa	268.9 MPa
Screws connecting left leg en d flange to box beam pad	Tensile		
	Combined te nsile & shear	178.8 MPa\$	268.9 MPa
Weld connecting left leg end f lange to box section	Tensile bendi ng		
Left leg end flange	Tensile bendi ng	54.3 MPa	117.5 MPa
Left leg end flange upper stiff ening rib	Tensile bendi ng	99.5 MPa	220.3 MPa
Screws connecting Y Piece to Left Leg	Tensile	84.5 MPa	220.3 MPa
	Combined te nsile & shear	39.6 MPa	220.3 MPa
Weld connecting IPS support	Shear	40.3 MPa	176.2 MPa
tube to Y Piece	Equivalent	78.3 MPa	268.9 MPa

Table. 2 IPS Support Frame Stresses for Case 2 Loads

4. Conclusion

Stress results have been presented an allowable stress of IPS support frame at the location. Calculated stress is sufficiently lower than the allowable stress values. All these values are lower than the allowable stress.

As a result, it is regarded that IPS support frame could maintain its structural integrity for the design loadings and service loadings.

REFERENCES

[1] ASME Design Requirements for Structural steel members, Section III NF-3322, 2001

[2] FTL Pool Penetration Stress Analysis Report, HAN-FL-E-074-RX-H005, Rev. A, 2004.

[3] Design Report for Supports (for IPS & Piping), HAN-FL-E-320-RT-R002, Rev. 0, 2005.