Application of the Zirconium-Steam Reaction Model to the CFX Code

Hyoung Tae Kim, Bo Wook Rhee, Joo Hwan Park Korea Atomic Energy Research Institute 150 Dukjin-Don, Yusong-Gu, Daejon 305-353, Korea kht@kaeri.re.kr

1. Introduction

As a part of a CFX simulation of the CS28-2 high temperature experiment, we have been developing the zirconium-steam reaction model to complete the transient calculation of this experiment. Since this CFX analysis will be used to support the verification work of the CATHENA code for the post-blowdown event, the zirconium-steam reaction model of the CATHENA code is reviewed. Then this reaction model is implemented to a User Fortran for its application to the CFX-10 code.

2. Review of the Zirconium-Steam Reaction Model in the CATHENA Code

2.1 Urbanic and Heidrick Model

The decay energy in the fuel rods during a postblowdown period of a CANDU reactor heats up the zirconium of the fuel rods and pressure tubes. It also ignites a chemical reaction between zirconium (Zr) and steam (H₂O). This is an exothermic reaction, i.e., it results in production of heat as well as a hydrogen gas (H₂) as follows:

$$Zr + 2H_2O = ZrO_2 + 2H_2 + 586 \text{ kJ}.$$
 (1)

It is generally accepted that the mechanism which governs this reaction is the diffusion of oxygen anions through the anion-deficient ZrO_2 lattice [1]. The reaction rate can be described by a parabolic expression of the form

$$\omega^2 = K_n t , \qquad (2)$$

where ω is a measure of the extent of reaction (i.e., weight of zirconium reacted per unit area), t is the reaction time, and K_p is the parabolic reaction rate constant. The K_p is related to temperature by an expression of the form

$$K_p = A \exp\left(-\frac{E}{RT}\right).$$
 (3)

where A is a constant, E is the reaction activity energy, R is the ideal gas constant, and T is the temperature of the oxidization layer (K).

Several investigations have been made to determine K_p as a function of temperature. One of these works, the oxidation model by Urbanic et al. [1] is used for the

default model of the CATHENA code [2]. The resulting K_n is given by the following correlations:

$$K_p = 29.6 \exp\left(-\frac{16820}{T}\right)$$
 for $T \le 1850$ K (4)
 $K_p = 87.9 \exp\left(-\frac{16610}{T}\right)$ for $T > 1850$ K (5)

Substituting $\rho_z \times \delta$ for ω in the Eq. (2) and differentiating with respect to time [3], we can obtain:

$$\frac{d\delta}{dt} = \frac{K_p}{2\rho_z^2\delta},\tag{6}$$

where δ is the thickness of the zirconium consumed during oxidation and ρ_z is the density of the zirconium.

2.2 CATHENA Model

For the CATHENA code, the rate of heat generation (Q) as a result of the zirconium-steam reaction at high temperatures is expressed as:

$$Q = CA_s \, \frac{d\delta}{dt} \,. \tag{7}$$

where C is the heat generation per unit volume of Zr (4.22×10^{10}) and A_s is the surface area of the reaction. This reaction requires that there be a Zr and a ZrO₂ region. The Zr-steam oxidation model starts to be applied when solid component temperatures reach 827°C.

Figure 1. Configuration of the growth of the ZrO_2 layer in a fuel pin.

To correctly simulate oxidation and the thermal response of the oxidizing layer, the growth of the ZrO_2 layer must be traced. For a fuel pin as shown in Fig. 1, let r_{out} and r_{in} be the instantaneous radii of the ZrO_2 -steam interface and the ZrO_2 -Zr interface, respectively. The original (no-oxidation: $\delta = 0$) outer radius of the fuel element is r_{Zr} . When zirconium is consumed by oxidation, r_{in} moves inward. At the same time, r_{out} moves outward as a result of the volume expansion caused by converting Zr to ZrO_2 . The thickness of zirconium consumed up to time t is obtained by integration of Eq. (7) to give:

$$\delta_t = \left(\delta_{t-\Delta t}^2 + \Delta t \cdot \frac{K_p}{\rho_z^2}\right)^{1/2}.$$
 (8)

where $\delta_{t-\Delta t}$ is the thickness of zirconium consumed up to time $t - \Delta t$ and Δt is the current time step size.

Then the hydrogen generation rate, H_{out} (mole/s) is

$$H_{out} = CA_s \left(\delta_t - \delta_{t-\Delta t} \right), \tag{9}$$

where, C is a constant (1.436×10^5) .

3. Implementation of the Oxidation Model to a User Fortran of the CFX code

3.1 CFX Expression Language (CEL) in ANSYS CFX-Post

The oxidation model described in the previous section is implemented to the CFX-10 [4] code. For this purpose, a User CEL Function which uses a user subroutine for the oxidation model of the CFX-10 is created. Then this subroutine is compiled and the library file required by the CFX-10 solver is created.

When creating a User CEL Function, we need some variables available for use in CEL expressions.

Table 1 CEL variables used in a User CEL Function

Name	Units	Meaning
ctstep	-	Current time step
dtstep	S	Time step interval
mf		Mass fraction
Т	K	Temperature

3.2 A CFX User Fortran for the Oxidation Model

A part of the CFX-10 user subroutine for the oxidation model is shown in Fig. 2. Finally this subroutine is tested to confirm that the CATHENA oxidation model is well implemented to it.

Figure 2. A user subroutine for the oxidation model of the CFX-10.

4. Conclusion

The CATHENA oxidation model was reviewed for the feasibility study of its CFX-10 application. The Urbanic and Heidrick model was analyzed for this purpose. Then the relevant subroutine of the CATHENA code is implemented to a user subroutine of the CFX-10. This user subroutine was well tested to be used for the transient calculation of a CS28-2 experiment in the future work.

REFERENCES

[1] V.F. Urbanic, High-Temperature Oxidation of Zircaloy-2 and Zircaloy-4 in Steam, Journal of Nuclear Materials, Vol.75, pp. 251-261, 1978.

[2] T.G. Beuthe, and B.N. Hanna (editors), CATHENA MOD-3.5c/Rev 0 Theoretical Manual, CANDU Owners Group Report, COG-99-007, 1999.

[3] D. Bowslaugh, CHAN-IIA Mod 2.0: Prediction of CANDU Fuel Channel Behaviour under Prolonged Low Flows-Program Description, AECL Report, TTR-490, ON. Canada, pp. 1993.

[4] ANSYS ICEM CFD, Release 10.0: Tutorial Manual, ANSYS, Inc., Canonsburg, 2005.