
Conceptual Design of Object Oriented Program (OOP)

for Pilot Code of Two-Fluid, Three-field Model with C++ 6.0

Bub Dong Chung, and Young Jin Lee

Korea Atomic Energy Research Institute, 150 Dukjin-dong, Yuseong, Daejeon, 305-353,Korea.

bdchung@kaeri.re.kr, yjlee1@kaeri.re.kr

1. Introduction

Engineering software for design purpose in nuclear

industries have been developed since early 1970s, and

well established in 1980s. The most popular and common

language for the software development has been

FORTRAN series, until the more sophisticated GUI and

software coupling is needed. The advanced computer

language, such as C++
[1]
, C# has been developed to help

the programming for the easy GUI need and reuse of well

developed routines, with adopting the objective oriented

program. A recent trend of programming becomes

objective-oriented since the results are often more intuitive

and easier to maintain than procedure program.

The main motivation of this work is to capture objective

oriented concepts for conventional safety analysis

programs which consist of many functions and procedure

oriented structures. In this work, the new objective

programming with C++ 6.0 language has been tried for the

PILOT
[2],[3]

 code written in FORTRAN
[4],[5]

language, and

conceptual OOP design of the system safety analysis code

has been done.

2. Method and Results

The PILOT code is a solver for one-dimensional two-

fluid three field thermal hydraulics. It was designed as a

procedure oriented program, and consists of many

functions. Object-oriented programs can be designed by

laying out the network of objects with their behaviors and

patterns of interaction and by arranging the hierarchy of

classes. Thus there is structure both in the program’s

activity and in its definition.

PILOT code has a basic solution structure to solve the

finite difference equations derived from three field

hydraulic equations. The whole system can be considered

as a network of volume and junction objects. The general

safety analysis code may be considered as an assembly of

more objects, such as heat structures, reactor kinetics, and

control. On the other side, the solution scheme needs a

strict order of functional process. The top function has

been designed as procedure oriented method for the

realization of the whole solution scheme. The elements

which can be classified as individual behavior have been

expressed as objects. The details of members and

functions of each element (or class) will be designed later.

2.1 Top functional procedures

The conventional functional processes are file-

open[FileOpen()] and input processing[InputProcess()].

After the initialization [Init()] , transient process will be

followed and repeated until the end of time. The transient

process consists of functions for time step control

[DtStepControl()], heat structure calculation

[HeatStrAdvance()], hydraulic solver [HydroSolve()],

reactor kinetics [ReactorKin()], and control and trip

[Control()].

2.2 Design of Classes

Reactor thermal system is considered as an assembly of

hydraulic loop and heat structure objects. Each hydraulic

loop consists of basic objects, such as volume and

junctions. The necessary components can be derived from

volume or junction. To get whole system, the reactor

kinetic and control& trip objects should be added. Class is

blue print of each object, and described in the follows.

2.2.1 Volume Class

Volume class is a basic class of system. It contains

volume geometry data and properties as member variables.

Some members such as velocity, hydraulic diameter

should be described as array variables to use for multi

dimensional code. The design of member functions is

relatively subjective. One should decide whether specific

function will be realized in volume class or not. Good

example is the functions for steam properties. Table 1

shows the member functions design for PILOT code.

Table1. Member function in volume class (PILOT)

Member Function

void init() Volume class initialization
void vavg() Calculation volume average velocity
double Hiff() Liquid side interfacial heat transfer
double Higg() Gas side interfacial heat transfer
void cell_matrix() 5x5 volume cell matrix coefficient
void cell_press() 5x5 volume matrix inverson, system

pressure matrix
void eq_back() 5(δUv,δUf, δαv,δαd,δP) calculation
void update() new variable update of old variable

Transactions of the Korean Nuclear Society Autumn Meeting
Gyeongju, Korea, November 2-3, 2006

1/2

void correct() Convervative form correction

2.2.2 Junction Class

Junction class is another basic class of hydraulic system.

It contains the junction geometry data and properties. The

necessary function to solve the momentum equation also

contains in junction class as shown in Table 2.

Table 2. Member functions in Junction Class (PILOT)

Member Functions

void init() Junction class initialization
void Properties() Junction dornoed property calc.
double fwall_d() Droplet flow wall drag coefficient
double fwall_v() Vapor flow wall drag coefficient
double fwall_l() Liquid flow wall drag coefficient
double fvl() Vapor-liquid interfacial drag
double fvd() Vapor-droplet interfacial drag
void cell_matrix() explicit velocity with 3x3 cell matrix
void eq_back() Final velocity calc. from volume P
void update() Old variable Update

2.2.3 Component Class

Component class is important feature of hydraulic

system, since all special functions required for system

code should be realized from special component model.

The design of these component can be varied depends on

the subjective decision. We can design Pump class

inherited from basic Volume class and Valve class

inherited from basic Junction class. Once the special

component class has been derived, the special component

function could be added or override the base class

function. This feature makes the encapsulation of the

special function within special component class.

2.2.4 Loop Class

Loop class contains the pointer for volume and junction

objects. It also has a pointer for steam table use. The

overall hydraulic solver and boundary function should be

included as loop member.

2.2.5 Other Classes

Heat Structure, Reactor Kinetics and Control&Trip

classes should be designed to complete the system. The

heat structure class needs the connections to volume

object as pointer. Reactor kinetics needs also the volume

and heat structure pointers to get reactivity feedback. The

general control class needs connection pointers to all

classes. The conceptual structure of the overall system

code is shown in Figure 1.

VolumeVolumeVolumeVolume

V, Dh[3], L[3],....

P,Uf, *junction

Property()

InterfaceHT()

ReadInp()

JunctionJunctionJunctionJunction

Ajun, Diamj,

Vf, Vg, Vd, *volume

Property()

InterfaceDrag()

ReadInp()

ComponentComponentComponentComponent

Pump Accum

Separa Valve

ReadPump()Accum()

ReadPipe(),Valve()

Nj,

Nv,

No

LoopLoopLoopLoop

Nj, nvol, matrix,*vol,

*jun, *comp, *steam

Solve()

Init(), TextOut()

Drag(),InterHTC()

HeatStrHeatStrHeatStrHeatStr

Area, Mesh, Gap,

Htcoeff, *volume

Init(),SetBC(),

Solve(),GammaW()

ReadInp()

RkinRkinRkinRkin

*vol, *hstr

Init(), react(),

Feedback(), Solve(),

ReadInp()

SystemSystemSystemSystem (null) (null) (null) (null)

Global Variables

Dt, timestep, ncount,

Input(),Init(),DtStep(),
HeatStr(),HydroSolve(),

Rkin(),Control(),Output(),Fin()

ControlControlControlControl

Scale, Mult, delay

*volume, *junction,*

Sum(), Diff(), PI(),

PID(), ReadInp()

Figure 1. Conceptual Structure of system code

3. Conclusion

The PILOT code was designed with OOP concept and

re-constructed with C++ objective language. It was

demonstrated that basic thermal hydraulic solver can be

realized with OOP concept and each functions can be well

encapsulated within basic classes. Once the function is

realized within class, there are many beneficial aspects in

both development and maintenance. However the actual

design of system code needs top design of functional

procedure as well as realization of bottom classes. Another

negative aspect is that there are too many connections

between objects. It makes the program difficult to read,

however the complication is inevitable and resulted from

the system code characteristics. The objective program

also needs many subjective decisions before the design of

class. The complete analysis of whole code system is

essential for the success of the objective oriented program.

REFERENCES

[1] Visual C++ 2005 Express Version Reference Manual,

MS Company (2005)

[2] J.J Jeong, et. al., “Basic Pilot code Development for

two fluid, three field model”KAERI/TR-3151/2006

(2006).

[3] M.K. Hwang et. al., “Development and Verification of

a Pilot Code based on Two-fluid Three-field Model”,

KAERI/TR-3239/2006 (2006)

[4] Compaq Visual Fortran 6.6 Version Language

Reference Manual, Compaq Co. (2001)

[5] John Reid, “The New Features of Fortran 2003”

ISO/IEC JTC1/SC22/WG5 N1579, Fortran Standard

Technical Committee, http://www.j3-fortran.org/

2/2

	분과별 논제 및 발표자

