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1. Introduction 

 
    Fault tree analysis is extensively applied in 

probabilistic safety assessments (PSA). The majority of 

fault tree analysis methods are based on the minimal cut 

set (MCS) approach. In PSAs, the risk and importance 

measures are computed from a cutset equation mainly 

by using an approximation. The conservatism of the 

approximations is also a source of quantification 

uncertainty.  

In this paper, a new MCS quantification method, 

which is based on the concept of ‘sum of disjoint 

products (SDP)’, is proposed and its applicability is 

described. 

 

2. Method and Results 

 
This section presents the concept and algorithm for 

generating an equivalent SDP to a set of MCSs.  

 

2.1 MCS Quantification  

 

In PSAs for nuclear power plants (NPPs), the risk 

measures (e.g., core damage frequency (CDF) and large 

early release frequency (LERF)) and importance 

measures (e.g., risk achievement worth (RAW), risk 

reduction worth (RRW), Fussell-Vesely (FV)) are  

computed from a cutset equation mainly by using “rare 

event” approximation or “min cut upper bound” 

approximation. It is well known that these 

approximations always provide conservative 

probabilities [1].  

In order to calculate the risk and importance 

measures, some unavailability functions are computed 

from a set of developed MCSs, {Ki | i = 1, …, m} as 

follows: 
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where Ki is the i-th MCS. However, the unavailability 

functions calculated with “rare event” approximation 

are greater than exact unavailability functions: 
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2.2 Concept of SDPs 

 

The basic foundation of SDP algorithms [2-4] is to 

transform the set of cut sets into another set of mutually 

exclusive events (a set of disjoint products (DP)) and 

then reduce the probability evaluation to a simple 

summation given as: 
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Consequently, SDP algorithms compute the exact MCS 

probabilities, h
m
(p), h

m
(0i,p) and h

m
(1i,p) ∀i.  

 

2.3 Proposed Algorithm for Generating Equivalent SDP 

 

The proposed SDP algorithm is based on the 

factorization method [2-4]. This method works 

according to the following recursive principle. Given a 

formula F, either F is reduced to a constant or it is 

possible to select a pivot variable x and to study 

recursively the two formulae 
xF  and 

xF , i.e., the 

formula F in which the constants 0 and 1, respectively, 

are substituted for the variable x. In other words, the 

method builds, at least implicitly, a tree. Leaves of this 

tree encode constants. Internal nodes encode formulae 

of the form 
xx FxxFF += . Branches of the tree that lead 

to a 1-leaf are labeled with wanted disjoint products. 

This tree-like presentation of the algorithm makes clear 

its exponential complexity.  

As an illustration, let us consider the set of MCSs, S 

= ab + bcd + dei + acei, taken from Ref. 2. The binary 

tree traversed by the SDP algorithm for S is shown in 

Figure 1. The sum of disjoint products developed by the 

proposed SDP algorithm is (from left to right): 

.eibda ei cdba dbc a c deib aeid b aab +++++  All 

the produced products are mutually disjoint and their 

sum is equivalent to the original formula S. Note that the 

proposed SDP algorithm does not provide necessarily 

the optimal sum of disjoint products equivalent to the 

original set of MCSs. 

The efficiency of the SDP algorithm relies on two 

issues. First, the data structure used to encode sum-of-

products 
xF  and 

xF  from F and x. Secondly, the 

branching heuristic. In order to be efficient, the 

proposed SDP algorithm uses the following simple 
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branching heuristic. The selected pivot variable is the 

variable in single-event products or the most frequent 

variable in formula F. Furthermore, the proposed 

algorithm uses optimally-reduced formulae of 
xF  to 

make the data structure reduced.  

  The proposed SDP algorithm is similar to the ESOP 

method [2]. These methods are different from each 

other in the data structure and the branching heuristic. 

From some numerical tests, we can see that the 

proposed algorithm is faster than the ESOP method. 

 

 

 

 SDP (ab + bcd + dei + acei)
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Figure 1. An example of binary tree built by the proposed 

SDP algorithm  

 

 

2.4 Numerical Example 

 

   Example 1 is the fault tree for the AFWS of Kori unit 

3&4, which contains 613 logic gates and 677 

independent basic events.  

Example 2 is the fault tree ‘European 1’ (given in Ref. 

5), which contains 84 logic gates and 61 independent 

basic events. 

All runs were performed on a 2 GHz Pentium IV 

using the FORTRAN program based on the proposed 

SDP algorithm. The proposed algorithm provides h
m
(p), 

h
m
(0i,p) and h

m
(1i,p) ∀i  as output. 

 

 

Table 1.  MCS quantification results for example 1 

 
Cut off 

value 

# of 

MCS 
hm(p)RE hm(p)SDP # of DPs 

CPU 

time(s) 

10-8 

10-9 

10-10 

10-11 

230 

806 

2245 

5423 

2.416E-4 

2.436E-4 

2.441E-4 

2.442E-4 

2.359E-4 

2.374E-4 

2.377E-4 

2.378E-4 

1285 

23044 

544199 

50901357 

0.05  

0.19  

1.58  

127.11  

hm(p)RE: calculated with “rare event” approximation 

hm(p)SDP: calculated by the proposed algorithm 

 

 

Table 2.  MCS quantification results for example 2 

 
Cut off 

value 

# of 

MCS 
hm(p)RE hm(p)SDP # of DPs 

CPU 

time(s) 

10-10 

10-11 

0 

1225 

7613 

46188 

1.143E-6 

1.370E-6 

1.393E-6 

9.189E-7 

1.064E-6 

1.078E-6 

455953 

7268250 

~ 2.8E9 

0.79  

13.20  

5533.2  

 

3. Conclusions 

 

This paper presents an exact MCS quantification 

method using the equivalent SDP to a set of developed 

minimal cut sets. This method can be easily applied to 

most problems in PSAs. This method will be useful in 

reducing uncertainty in the field of PSA quantification.  
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