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1. Introduction 

 
Recently, the lattice Boltzmann method(LBM) has 

gained much attention for its ability to simulate fluid 

flows, and for its potential advantages over conventional 

CFD method. The key advantages of LBM are, (1) 

suitability for parallel computations, (2) absence of the 

need to solve the time-consuming Poisson equation for 

pressure, and (3) ease with multiphase flows, complex 

geometries and interfacial dynamics may be treated. The 

LBM using relaxation technique was introduced by 

Higuerea and Jimenez[1] to overcome some drawbacks 

of lattice gas automata(LGA) such as large statistical 

noise, limited range of physical parameters, non-

Galilean invariance, and implementation difficulty in 

three-dimensional problem. The simplest LBM is the 

lattice Bhatnager-Gross-Krook(LBGK)[2] equation, 

which based on a single-relaxation-time(SRT) 

approximation. Due to its extreme simplicity, the lattice 

BGK(LBGK) equation has become the most popular 

lattice Boltzmann model in spite of its well-known 

deficiencies, for example, in simulating high-Reynolds 

numbers flow. The Multiple-Relaxation-Time(MRT) 

LBM was originally developed by D’Humieres[3]. 

Lallemand and Luo[4] suggests that the use of a 

Multiple-Relaxation-Time(MRT) models are much 

more stable than LBGK, because the different relaxation 

times can be individually tuned to achieve ‘optimal’ 

stability. 

A lid-driven cavity flow is selected as the test 

problem because it has geometrically singular points in 

the flow, but geometrically simple. Results are 

compared with those using SRT, MRT model in the 

LBGK method and previous simulation data using 

Navier-Stokes equations for the same flow conditions. 

In summary, LBM using MRT model introduces 

much less spatial oscillations near geometrical singular 

points, which is important for the successful simulation 

of higher Reynolds number flows. 

 

2. Methods and Results 

 

2.1 LBM with SRT model 

 

LBM method solves the microscopic kinetic equation 

for artificial particle distribution function f(x,v,t), where 

x and v is the particle position and velocity vector, 

respectively, in phase space (x,v) and time t, where the 

macroscpic quantities (velocity and density) are 

obtained through moment integration of f(x,v,t). The 

most popular LBM is the SRT LBGK model[2], and 

listed as follows: 
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 are the particle distribution 

function and equilibrium particle distribution function 

of the ith discrete particle velocity vi , respectively, e is 

a discrete velocity vector. Note that t∆  is the advancing 

time step and τ  is the collision relaxation time. The 

D2Q9 model is used in the current study for simulating 

the cavity flow. Let tytxc ∆∆=∆∆= //  be the lattice 

streaming speed for isothermal near-incompressible 

flows, the equilibrium distribution function can be 

derived as the following form[2] 
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where iw is a weighting factor and u  is the fluid 

velocity. In addition, the valus of the weighting factors 

are iw =4/9, i=0; iw =1/9, i=1,2,3,4; iw =1/36, 

i=5,6,7,8. The density and velocities can be computed 

simply by moment integration as 
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Application of the multi-scale technique(Chapma-

Enskog expansion) yields the Navier-Stokes equation 

with the pressure 
2

scp ρ= , where 3/ccs = , and an 

advection term with Galilean invariance. The viscosity 

of the simulated fluid is 
2)2/1( sct∆−= τν . In general, 

Eq.(1) is solved in two steps: 

 

collion step: 
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streaming step: 
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which is known as the LBGK method. Note that, in 

the above, * denotes the post-collision values. 

 

2.2 LBM with MRT model 

 

Recently, Lallemand and Luo[4] have performed 

detailed theoretical analysis on the dispersion, 

dissipation and stability characteristics of a generalized 
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lattice Boltzmann equation model proposed by 

d’Humieres[3]. They have found that the MRT model is 

equivalent to the SRT model in the long wave-length 

(low wave number) limit for macroscopic variables of 

interest in various simple flows through the linearized 

analyis. Difference between two relaxation models is 

identified as a high-order effect(short wavelength limit), 

which can hardly detected in simple flows. It is well 

known that geometrically and mathematically singular 

points can adversely affect the flow solution in short 

wavelength limit. For convection-dominated flows, the 

local difference near the singularities may also lead to 

large differences in flow regimes far away. Thus, it is 

important to understand how the solution using MRT 

model is different from that using SRT model. In 

addition, it is potentially useful to compute flows at 

high-Reynolds numbers using MRT model in LBM.  

 

2.3 Boundary conditions 

 

How to properly implement the wall boundary 

conditions within LBM framework is still an ongoing 

research topic[5]. The most popular scheme is the so-

called ‘bounce-back’ scheme, which has been argued 

that it is only of first-order accuracy as compared with 

of second-order accuracy for LBM formulation. 

However, it was recently shown that the error is 

sufficiently small if the relaxation parameter is chosen 

to be close enough to 0.5[5].  

In the current study, the upper moving plate velocity 

U=0.1, considering the validity of using LBM in 

simulating near-incompressible flows. We have 

assumed equilibrium distribution function at the upper 

moving plate, which is computed by substituting the 

uniform velocity into Eq.(2) and the initial density 

assignment. After streaming, the velocity at the top plate 

is reinforced to be the uniform plate velocity and then 

the equilibrium distribution function is reevaluated 

using the fixed plate velocity and the updated density at 

the plate.  

 

2.4 Results 

 

We compare various macroscopic variables(u, p) of  

interest. Results from the LBM using MRT and SRT 

models are compared with those of N-S solvers by Ghia 

et al[6](Figure 1). It is clearly shown that the difference 

of velocity distributions between the current study and 

Ghia et al.[6] is very small. Also the difference between 

MRT and SRT models is nearly undistinguished up to 

Re=1000. Generally, the overall flow structures 

(streamlines) predicted by the SRT and MRT models 

are very similar to those predicted by Ghia et al.[6], 

except some differences near the corners. As Reynolds 

number increases, there exists obvious pressure ‘jiggles’ 

around the upper two cavity corners using SRT model, 

especially due to the geometrical singularity at this 

corner. The situation even worse at Re=2000, but using 

the MRT model, there is no such pressure ‘jiggles’. In 

addition, the SRT model, as compared with MRT model, 

is not converged well at high Reynolds 

Number(Re~5000). Finally, The MRT model is more 

suitable than SRT model for treating flow around 

geometrical singularity and high-Reynolds number 

flows.  
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Figure 1. Velocity profile for u at x/L=0.5. 

 

3. Conclusion 

 

The lid-driven cavity flow is simulated by LBGK 

method using MRT scheme. Results are then compared 

with those by LBM using SRT, MRT scheme and 

previous published data using N-S solver[6]. In general, 

results using MRT and SRT techniques are both in good 

agreement with those using N-S solver for 

Re=100~1000. We can conclude that MRT scheme is 

superior to SRT scheme in simulating high-Reynolds 

number flows with geometrical singularity due to the 

different relaxation rates for different physical modes 

embedded in MRT scheme. 
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